## **A**PPENDIX

## A. Properties for Layering Cartoon Hair

This appendix details the last three layering properties in subsection 4.2. To begin, we first define the concept of *angles domain* for junction angles  $\alpha$  and  $\beta$ . Since they locate at a common 2D junction, their sum should not exceed  $2\pi$ . Moreover, without loss of generality, we assume  $\alpha$  to be a larger angle, i.e.,  $\alpha \ge \beta$ . Hence, the domain of  $\alpha$  and  $\beta$  is basically the lower quarter of  $[0, 2\pi] \times [0, 2\pi]$ , which is the green area in Fig. 1(a).

Properties 2 to 4 supplement Property 1 for deciding the layering among cartoon hairs, see Fig. 1(b):

- Property 2 is based on the fact that when α and β have similar sizes (Fig. 2: example 1), we should not arbitrarily decide a layering between their related image regions solely by α and β, see Fig. 1(c).
- Property 3 accounts for a cartoon-hair-related situation, where multiple hair strands go below another hair strand altogether (Fig. 2: example 2). In this case, α+β ≈ π, and we again should not arbitrarily decide a layering between the two related regions solely by α and β, see Fig. 1(d).
- Lastly, Property 4 is related to another common situation with cartoon hairs (particularly due to image rasterization), where a hair tip lands on the edge of another hair strand (Fig. 2: example 3). Concerning this, when we compare  $\alpha$  and  $\beta$ , we regard the region with a tiny sharp angle to be on the top because hair regions with sharp angles are very likely to be hair tips, i.e.,  $\beta$ , which is the smaller angle, is close to zero. However, since we have to avoid the situations related to Properties 2 and 3,  $\alpha$  should not be close to zero or  $\pi$  at the same time, see the blue areas in Fig. 1(e).

## B. Algorithm: Hair Completion in Section 5 (Case 2)

Algorithm 1 below describes how we refine  $C_0$  by the combined vector field  $F_{ext}$  to form the completion area. Note that N is the normal of the curve;  $V_i$  is the velocity to push the curve outward; and  $\mathbb{A}$  is a pentadiagonal matrix, see [30] for its detail.

| Algorithm 1 ITERATIVE_REFINE $(\mathbf{C}_0, F_{ext})$                                                                  |
|-------------------------------------------------------------------------------------------------------------------------|
| 1: $i \Leftarrow 0$                                                                                                     |
| 2: while true do                                                                                                        |
| 3: $i \Leftarrow i + 1$                                                                                                 |
| 4: <b>for</b> each sample point $C_{i-1}(t)$ <b>do</b>                                                                  |
| 5: $V_i(t) \Leftarrow   \hat{F}_{ext}(\mathbf{\hat{C}}_{i-1}(t)) \cdot N(\mathbf{C}_{i-1}(t))  N(\mathbf{C}_{i-1}(t)) $ |
| 6: $\mathbf{C}_i(t) \leftarrow (I - \mathbb{A})^{-1} [\mathbf{C}_{i-1}(t) + V_i(t)]$                                    |
| 7: <b>if</b> $C_i(t)$ outside $O(R)$ then                                                                               |
| 8: return $C_{i-1}$                                                                                                     |
| 9: end if                                                                                                               |
| 10: <b>end for</b>                                                                                                      |
| 11: <b>if</b> $  V_i   < \epsilon$ then                                                                                 |
| 12: return $C_i$                                                                                                        |
| 13: end if                                                                                                              |
| 14: end while                                                                                                           |



Fig. 1. (a) Domain of junction angles  $\alpha$  and  $\beta$ ; (b-e) Properties that define the junction metric for layering.



Fig. 2. Example Cartoon Hairs for Properties 2, 3 and 4.

## C. Deformation Model for Local Hair Manipulation

The objective is defined as  $\Omega = w_R \Omega_R + w_H \Omega_H + w_C \Omega_C$ , where  $w_R$ ,  $w_H$  and  $w_C$  are the weighting coefficients, which are set to 20, 1, 1000, respectively in all our experiments.  $\Omega_R$  is a deformation term defined as  $\Omega_R =$  $\sum_{i \in \mathbf{V}, k \in \mathbf{S}} w_i^k ||(\mathbf{v}_i - \mathbf{s}_k) - \mathbf{T}_k(\mathbf{v}'_i - \mathbf{s}'_k)||^2$ , where  $w_i^k$  is the weight of vertex  $v_i$  for skeleton  $s_k \in \mathbf{S}$  (S is a set of bones) and is set to be the inverse of the distance from the skeleton; and symbol ' indicates variables of the deformed skeleton.  $\mathbf{T}_k$  is the transformation matrix to restrict the resizing of hair along the tangential direction of the skeleton to maintain the overall shape; it is defined as a rigid transformation:

$$\mathbf{T}_{k} = \mathbf{R}_{(1,0)}^{e_{k'}} \begin{bmatrix} s & 0\\ 0 & 1 \end{bmatrix} \mathbf{R}_{e_{k}}^{(1,0)}$$

where  $e_k = s_{k2} - s_{k1}$  and  $e'_k$  is the deformed edge vector, and  $\mathbf{R}_v^{v'}$  is the rotation matrix that transforms vertex v to v'; and  $s = ||e_{k'}||/||e_k||$  is a scale factor. This transformation allows (and prevents) scaling along tangential (and normal) direction of the bones.  $\Omega_H$  is a smoothness term defined as  $\Omega_H = \sum_{(i,j) \in \mathbf{E}} w_{ij} ||\mathbf{v}'_j - \mathbf{v}'_i||^2$ , where  $w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij}$  are the discrete harmonic weights,  $\alpha_{ij}$  and  $\beta_{ij}$  are the angles opposite to the edge (i, j) in the original mesh.  $\Omega_C$  is a constraint term defined as  $\Omega_C = \sum_{i \in \mathbf{C}} ||\mathbf{v}_i - \mathbf{v}'_i||^2$ , where **C** is a set of constraint vertices. We set boundary constraints at the root of the hair strand.