
We introduce a data-driven solution to problem of general 2D animation resequencing. Given an unordered collection of images, the proposed method

can create new “as-smooth-as-possible” animation of arbitrary length or select suitable in-between images for a set of key-frames. Our framework involves

two phases. First, a denoising autoencoder is trained to extract a lower dimensional representation of an image so that the temporal coherence of images can

be sufficiently measured. Then, the trained encoding network maps a new collection of images to their lower dimensional embedding, when we generate a

variety of animations by traversing an approximated animation manifold. We describe the autoencoder’s network architecture and training procedure in

detail and give two path-finding algorithms, one for key-frame in-between selection and another for animation synthesis. In contrast to previous works, our

proposed technique does not require fine-tuning of parameters and applies to a variety of image styles. Experimental evaluation proves our proposed method

can generate appealing results.
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Given an unordered collection of images as input, our proposed system

can decide suitable in-between images for a set of key-frames, or

synthesize new animation sequences which are locally “as smooth as

possible”. To control the output, a user has the option to supply either a

set of key-frame images or a starting frame and sequence length; then

the system will create an animation with the desired properties.

We firstly train a denoising autoencoder on a collection of animation

images downloaded from the internet. After training the autoencoder, we

apply the encoding network to a collection of images supplied by the

user to obtain lower-dimensional latent vector representations. From

these latent vectors, we compute a Euclidean minimal spanning tree

(MST), and the proposed key-frame pathfinding uses the MST to

generate in-between images. To synthesize new animations of arbitrary

length, we compute a path-connected proximity graph and employ a

Monte Carlo method to find a path that is as smooth as possible.

In the phase of generating animation sequences, a key-framing method and

a path exploration are proposed. In the key-frame pathfinding, the MST is

employed to reduce in-betweens by traversing the path from one key-frame

node to another. The paths connecting key-frame nodes in an MST are well

suited for finding in between images. In the proposed path exploration

method, we employ a Monte Carlo technique for synthesizing new

animations with the desired length.

To generate key-frame results, we examined the MST to guide key-frame

selection and return precisely six in-between images. These results

generated with the proposed method are shown in figure 3. In general, the

user cannot directly control the number of in-between images returned for

arbitrary key-frame selection. However, using the linear embedding of the

MST for visualization provides a useful way to select key-frames that

produce the desired number of in-betweens.

In the future, we would like to extend our work to a supervised learning

framework which considers the temporal distance of the training data to

solve above problems.

Figure 1: The system overview.

Figure 2: The network architecture of the proposed autoencoder.

Figure 3: Results were created by randomly selecting a contiguous

group of eight frames from an animation generated with the

proposed path exploration method.

Figure 4: Results of our proposed key-frame method. 


