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Figure 1: Our proposed (a) Efficient Two-Stage Concept Erasure (ETCE) algorithm demonstrates three key capabilities: (b)
single-concept erasure, (c) multi-concept erasure, while effectively (d) preserving non-target concepts.
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1 Introduction
Recent advances in text-to-image (T2I) models enable highly re-
alistic image synthesis, yet these models often produce outputs
containing infringing or illegal content. These issues stem primar-
ily from substantial noise in the training data. Given the prohibitive
cost of data purification and full model retraining, developing effi-
cient concept erasure methods is essential for content security.

Concept erasure methods can be divided into training-based
and training-free categories. While training-based methods such
as ESD [Gandikota et al. 2023] offer strong erasure performance,
they require costly hyperparameter tuning and are too slow for
real-time use. Training-free approaches like UCE [Gandikota et al.
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2024], SPEED [Li et al. 2025], and ICE [Lin et al. 2025] allow efficient
removal but suffer from incomplete target-concept erasure and un-
intended non-concept deletion. To address these issues, we propose
ETCE, a novel approach that integrates adversarial fine-tuning with
null-space constraints and prompt-embedding optimization to en-
sure thorough removal of target concepts (Fig. 1(b), Fig. 1(c)) while
robustly preserving non-target semantic content (Fig. 1(d)).

2 Method
Our concept erasure algorithm implements a two-phase architec-
ture: (1) Model Editing, (2) Prompt Embedding Processing. The
complete workflow diagram is presented in Fig. 1(a). In the Model
Editing phase, we formulate the following objective function:

𝑚𝑖𝑛 | |𝑊2𝑐𝑒 −𝑊1𝑐𝑎 | |2 + ||𝑊2 −𝑊1 | |2, 𝑠 .𝑡 .,𝑊2𝑐𝑝 −𝑊1𝑐𝑝 = 0, (1)

where 𝑐𝑝 , 𝑐𝑒 , and 𝑐𝑎 denote the stacked embedding vectors of non-
target, target, and anchor concepts, respectively, while 𝑊2 and
𝑊1 represent the post-editing and original Stable Diffusion value
matrices. By imposing constraints, we prevent interference with
non-target concepts during target concept removal. We then opti-
mize target concept embeddings for more thorough erasure using
the following objective function:

min
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′
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Table 1: Concept erasure quantitative comparison.

Concept Nemo Pooh Snoopy Pikachu Hello Kitty

CS ↓ CS ↓ CS ↓ CS ↓ CS ↓
SD v1.4 25.90 27.66 28.53 27.45 27.76

Erase Nemo

CS ↓ FID ↓ FID ↓ FID ↓ FID ↓
ESD 22.89 35.50 41.41 28.78 35.92
UCE 23.42 25.17 28.15 21.54 26.80
SPEED 23.33 25.86 31.03 24.68 30.16

Ours 21.68 19.35 21.49 17.61 22.16

Erase Nemo and Pooh and Snoopy

CS ↓ CS ↓ CS ↓ FID ↓ FID ↓
ESD 23.62 25.45 25.33 51.36 63.71
UCE 23.68 25.45 23.00 26.13 31.28
SPEED 23.28 23.07 23.52 25.96 31.37

Ours 21.93 21.37 21.89 21.90 25.43

where 𝑐′𝑒 denotes the optimized target concept embeddings, and 𝛼
serves as a manually adjustable parameter to control the regular-
ization strength. By optimizing this objective function, we derive
the optimal embedding solution as 𝑐′𝑒 =

(
𝛼𝐼 +𝑊𝑇

2 𝑊2
)−1 (

𝑊𝑇
2 𝑊1

)
𝑐𝑒 .

Substituting the optimal embedding 𝑐′𝑒 for 𝑐𝑒 in function 1 to per-
form concept erasure yields the desired value matrix.

In the Prompt Embedding Processing phase, we optimize prompt
embeddings through a targeted adjustment pipeline. First, we iden-
tify token positions containing target concept embeddings within
the original prompt embedding space. From these, we extract the
erasure-targeted embedding matrix 𝐸𝑇 , which undergoes singular
value decomposition (SVD):𝐸𝑇 =𝑈 Σ𝑉𝑇 , where Σ = diag[𝜎1, 𝜎2, . . . ,
𝜎𝑛]. Since the embedding matrix primarily encodes target concept
information, larger singular values typically correspond to these
concepts. Thus, for singular values exceeding the mean, we apply:
𝜎 ′
𝑖 = 𝑒−𝛽𝜎𝑖 · 𝜎𝑖 . The original 𝐸𝑇 is thus adjusted to 𝐸′

𝑇
= 𝑈 Σ′𝑉𝑇 ,

where 𝛽 serves as a tunable parameter controlling suppression in-
tensity. Feeding the optimized prompt embeddings into downstream
generators enhances concept erasure, enabling more thorough tar-
get semantic suppression during image generation.

3 Experiments
We conducted a comprehensive concept erasure evaluation com-
paring our algorithm with three baseline methods (ESD [Gandikota
et al. 2023], UCE [Gandikota et al. 2024], and SPEED [Li et al. 2025])
on five target objects (Nemo, Pooh, Snoopy, Pikachu, and Hello
Kitty) under both single-concept and multi-concept erasure cases.
Using CLIP Score (CS) and Fréchet Inception Distance (FID) as evalu-
ation metrics with adjustable parameters (𝛼 = 0.001 and 𝛽 = 0.003),
we generated 10 images per template across 80 distinct templates.
As shown in Table 1, our algorithm consistently outperforms all
baseline methods (ESD, UCE, and SPEED), achieving the lowest
CS scores for target concept erasure and the lowest FID values for
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Figure 2: Concept erasure qualitative comparison.

non-target concept preservation, demonstrating superior perfor-
mance in both concept removal and content retention. Figure 2
visually confirms precise target concept removal while maintaining
high-quality generation and minimal impact on non-target outputs
compared to original SD v1.4.

4 Conclusion
This paper introduces ETCE, an efficient two-stage concept eras-
ing method for T2I models. During model editing, it performs ad-
versarial fine-tuning with null-space constraints, while in prompt
embedding processing, it regularizes target concept embeddings.
This approach effectively addresses two key challenges: incomplete
target concept removal and unintended non-target concept deletion.
Experiments demonstrate that our method achieves precise target
concept removal while preserving others. Future work will extend
this approach to implicitly expressed concepts in prompts.
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