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Abstract—This paper addresses the topic of content-aware
stereoscopic image retargeting. The key to this topic is consis-
tently adapting a stereoscopic image to fit displays with various
aspect ratios and sizes while preserving visually salient content.
Most methods focus on preserving the disparities and shapes
of visually salient objects through nonlinear image warping,
in which distortions caused by warping are propagated to
homogenous and low-significance regions. However, disregard-
ing the consistency of object deformation sometimes results
in apparent distortions in both the disparities and shapes of
objects. An object-coherence warping scheme is proposed to
reduce this unwanted distortion. The basic idea is to utilize the
information of matched objects rather than that of matched pixels
in warping. Such information implies object correspondences in a
stereoscopic image pair, which allows the generation of an object
significance map and the consistent preservation of objects. This
strategy enables our method to consistently preserve both the
disparities and shapes of visually salient objects, leading to good
content-aware retargeting. In the experiments, qualitative and
quantitative analyses of various stereoscopic images show that
our results are better than those generated by related methods
in terms of consistency of object preservation.

Index Terms—Mesh warping, optimization, stereoscopic image
retargeting.

I. Introduction

CONTENT-aware retargeting has elicited increasing at-
tention in the field of computer science during the last

decade. The basic idea of this technique is to adapt the
aspect ratios of media data to fit various display devices
while preserving visually salient content [1], [2]. This tech-
nique was recently applied to stereoscopic images because
of the rapid development of stereoscopic equipment. Similar
to image retargeting, seam carving, and mesh warping are
recent techniques for stereoscopic images. The main idea of
seam carving is to consistently remove seams passing through
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homogenous regions in a stereoscopic image pair, and that of
mesh warping is to optimize a deformation in a stereoscopic
image. Although these two approaches perform well in most
cases, seam carving may yield jagged edges and mesh warping
may produce inconsistent object deformation. The presence of
jagged edges and inconsistent object deformation will lead to
discontinuous artifacts and incorrect disparities, respectively.
An object-coherence warping method inspired by the concept
of object-aware retargeting [3] is therefore proposed, in which
the visually salient objects in an image pair are deformed con-
sistently and rigidly, leading to consistent content preservation.

The basic idea behind the proposed method is to measure
content significance and resize a stereoscopic image by uti-
lizing the information of matched objects rather than that of
matched pixels. The information of matched objects in an
image pair allows the generation of an object significance map
and the consistent preservation of visually salient objects in
warping. In the proposed method, the input stereoscopic image
is segmented into several objects and the corresponding objects
in the left and right images are assigned the same significance
value in the preprocessing. During warping, an object with
high significance value is forced to undergo as-consistent-
as-possible and as-rigid-as-possible deformation using various
preservation constraints while propagating distortions through
an optimization process.

The goal of preserving disparity of visually salient content
in this paper is the same as that in [4] and [5], and the goal
of preserving shapes of visually salient objects is the same
as that in [3]. However, the proposed method is substantially
different from these related methods. First, instead of the
pixel-coherence warping in [4], an object-coherence warping
is proposed in the current paper to ease the distortions caused
by inconsistent object deformation. As shown in Fig. 1, the
inconsistent deformation that appears in the disparity and
shape of the foreground object is eased by our method. Second,
an object-based significance map with consistent partition
of a stereoscopic image pair is proposed to preserve the
visually salient content. Third, continuous mesh warping is
adopted rather than discontinuous one [5]. Instead of resizing
each object layer separately, following the mesh-warping-
based methods, our method combines all the object saliency
values in a significance map and then a continuous mesh
warping is performed on the basis of this significance map.
Fourth, some consistent deformation constraints are introduced
in the optimization to deform visually salient objects not only
rigidly as in [3] but also consistently. These differences enable
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Fig. 1. Deformation distortion. Left: original stereoscopic image. Middle:
retargeting results generated by Chang et al. [4]. Disparity and shape distortion
occurs on the road (see the blue lines) and car (see the close-up view at the
bottom) because of the inconsistent object deformation. Right: our result.
Distortion is eased by the proposed method.

our method to yield better retargeting results in terms of
deformation consistency and disparity preservation, compared
with the related methods.

II. Related Work

Many content-aware retargeting techniques have been pro-
posed in the last decade. Only the methods for stereoscopic
images are discussed in this section. Readers can refer to
techniques on image retargeting in the survey in [6] and
video retargeting in recent works [7]–[10]. The retargeting
methods are classified into discrete and continuous based on
the categorization suggested in [6]. In the discrete methods, a
stereoscopic image is resized by cropping [11] or seam carving
[12], [13]. Niu et al. [11] propose an aesthetics-based cropping
method in which an input image pair is optimally cropped and
then rescaled such that the aesthetic value defined according
to the principles of stereoscopic photography is maximized.
Although this method performs well in most cases, it is
inappropriate for the case in which visually salient contents
are located near the borders of images. Utsugi et al. [12] and
Basha et al. [13] extend the image seam-carving technique
[1] to stereoscopic images. In these methods, a pair of one-
pixel-wide seams with minimal significance in the left and
right images is iteratively and simultaneously carved to resize
the input images to the desired aspect ratio. This technique
allows high flexibility in seam removal and can, therefore, be
applied to object removal. However, carving seams sometimes
produces discontinuous artifacts in the visually salient content,
thereby causing visual distortion.

Compared with the methods that discretely remove pixels in
homogenous regions or crop the borders of an image, continu-
ous methods that optimize warping using several deformation
and smoothness constraints potentially perform better in im-
ages containing dense information. In [4] and [5], stereoscopic
image retargeting is formulated as a least-squares warping
problem. Warping from a source data to a target display is
optimized with the aid of a significance map and depth layer
information. Therefore, the disparities and shapes of objects
in the high-significance layers are preserved, whereas the
low-significance regions are squeezed or stretched. However,
inconsistent object deformation and discontinuous warping
may occur in [4] and [5], respectively. Niu et al. [14] provide

various editing operations for stereoscopic images. The idea
behind these operations is to warp one of the images in a
stereoscopic pair using user-defined warping and then warp
the other image to follow the previous warping and to preserve
disparities. Wang and Sawchuk [15] develop a disparity ma-
nipulation system in which the warping technique is utilized
for view synthesis. Lang et al. [16] discuss the perceptual
aspects of stereo vision and their applications for content
manipulation. They provide a set of basic disparity mapping
operators and a warping function to achieve desirable disparity
distributions. Luo et al. [17] and Liu et al. [18] further apply
the mesh-warping technique to seamless stereoscopic image
cloning and authoring, respectively. Although the above-
mentioned retargeting methods can yield good results, the
lack of consideration of the consistency of object deformation
or the continuity of mesh warping may result in apparent
distortions in the disparities and shapes of visually salient
objects. In this paper, we ease the inconsistency of deformation
by utilizing the information of matched objects. In addition,
following [2], we adopt a continuous warping scheme rather
than a discontinuous one.

The concept of object-aware retargeting has been introduced
in the image-retargeting approaches [3], [19], [20]. Niu et al.
[19] and Zhang et al. [20] proposed to extract and preserve
foreground objects in warping based on the fact that users are
more interested in foreground objects. These two methods can
preserve the shapes of foreground objects well. However, the
problem of over-constraining may make the methods unsuit-
able for images/videos that contain visually salient content
in the background. To solve this problem, Lin et al. [3]
proposed a patch-based warping method to force visually
salient objects to undergo as-rigid-as-possible deformation,
while low significance contents are warped as close as possible
to linear rescaling. In this paper, an object-coherence warping
is proposed to deform visually salient objects not only rigidly
but also consistently. In this way, both the disparities and
shapes of visually salient objects can be well preserved.

III. Stereoscopic Image Retargeting

The proposed content-aware retargeting is performed in two
steps: object-based significance map generation and object-
coherence mesh warping. In the preprocessing, the left and
right images are consistently segmented into several objects
and significance measurement is then performed for the seg-
mented object pairs to generate a significance map. In this
step, context-aware saliency estimation [21] is adopted to
estimate the saliency value of each pixel in the left and right
images. Afterward, each segmented object pair is assigned an
average saliency value to address the problem of inconsistent
object deformation. In the retargeting, two grid meshes are
created to cover the left and right images, and the proposed
object-coherence warping is performed to force the grids
within an object to undergo as-consistent-as-possible and as-
rigid-as-possible deformation during resizing. We describe the
significance map generation and the object-coherence warping
in Sections III-A and III-B, respectively, followed by the
optimization solver, which is described in Section III-C.



LIN et al.: OBJECT-COHERENCE WARPING FOR STEREOSCOPIC IMAGE RETARGETING 761

Fig. 2. Significance map generation. The significance map is designed by
combining the estimated pixel saliencies and segmented objects to reduce
object inconsistencies in both shape and disparity deformation. The left and
right images are shown at the top and bottom, the segmented objects are
represented by colors, and the significance values are presented by colors
ranging from blue (the lowest significance) to red (the highest significance).

A. Significance Map Generation

The significance map plays an important role in the content-
aware retargeting algorithms, and many salient detection meth-
ods have been proposed [21]–[24]. A pixel with high saliency
value is generally considered a significant pixel. Besides, the
pixel significance is measured by considering the content
in both the left and right images instead of generating sig-
nificance maps individually [4], [13]. However, inconsistent
deformation may arise when such a pixel-based measurement
is utilized in retargeting. Our aim is to consistently preserve the
disparities and shapes of high-significance objects rather than
those of high-significance pixels. We, therefore, propose an
object-based significance measurement. Given a stereoscopic
image, the left and right images are simultaneously segmented
into several homogenous objects using spatiotemporal segmen-
tation [25]. Each object is assigned the average of saliency
values of pixels within that object. Pixel saliency is estimated
using the saliency-detection approach [21].

The left and right images are viewed as overlaid images
in the segmentation; thus, the images are partitioned into
several two-slide volumetric objects through a hierarchical
graph-based segmentation technique. Segmentation quality is
then improved using the optical flow technique to establish the
connections between the left and right images in the partition.
However, the problem of over-segmentation may occur. To
address this problem, the commonly used merge process is
performed with the information of pixel color and object
disparity. Specifically, the adjacent objects with similar color
and disparity are merged.

Once the stereoscopic image is segmented and the pixel
saliency is obtained, the significance value of an object is
calculated by averaging the saliency values of pixels within the
object. Each mesh grid is assigned the significance value of the
object that occupies this grid. With the aid of significance map,
the grids occupied by an object have the same significance
value; thus, this object in the stereoscopic image can be
consistently deformed in warping. Fig. 2 provides an example
of stereoscopic image segmentation and significance map gen-
eration. The objects, including the foreground and background
objects, in the left and right images are consistently extracted,
and the object significance values are calculated by combining
the information of segmented objects and pixel saliency values.
This significance map can enable our method to consistently

Fig. 3. Illustration of disparity preserving term. GL and GR are the represen-
tative pixels of the left and right images, respectively; pL

ij and pR
ij are the

representative pixels of the jth row of the object oi in the left and right
images, respectively, and Hij is the similarity transformation between the
vectors (pL

ij − pR
ij ) and (GL − GR).

preserve the disparities and shapes of objects during warping.
Note that generating perfect segmentation is difficult, even
when a state-of-the-art segmentation algorithm is used. Fortu-
nately, the proposed approach can ease the problem of imper-
fect object segmentation by propagating distortions to nearby
regions. This characteristic is discussed in Section IV-A.

B. Object-Coherence Warping

A uniform grid mesh pair (ML, MR) is created to cover the
input stereoscopic image pair (IL, IR). Each grid mesh contains
a vertex set V = {v1, ..., vnv

}, an edge set E = {e1, ..., ene
}, and

a grid set Q = {q1, ..., qnq
}. Here, nv, ne, and nq represent the

number of vertices, edges, and grids, respectively. In addition,
a set of objects O = {o1, ..., ono

} and their significance values
S = {s1, ..., sno

} obtained in the preprocessing are employed in
the warping, where no represents the number of segmented
objects. Two energy terms, namely, disparity preservation and
shape preservation, are defined with an optimization solver
to preserve both the disparity information and spatial shapes.
These two energy terms are described as follows.
Disparity preservation energy. Our warping method aims to
obtain a pair of deformed grid meshes (M̃

L
, M̃

R
) in which

the high-significance objects are deformed consistently for
disparity preservation. Two energy terms, namely disparity
preserving and deformation consistency, are defined for this
purpose. The disparity preserving term is to preserve the
original disparity values as much as possible and to avoid
vertically shifting effects happened between the corresponding
pixels in the left and right images. In the related work,
the disparity energy is generally defined as the difference
between the disparity values of the corresponding pixels in
the original and deformed images. Although the disparity can
be preserved in this manner, disregarding the consistency of
disparity values of the pixels within an object may result in
unnatural stereoscopic content. To address this problem, the
concept of object-based preservation is introduced to this term.
Specifically, the disparity preserving energy is formulated by
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Fig. 4. Illustration of barycentric coordinate. A1, A2, A3, A4 are the areas
of quadrangles corresponding to vertices v1, v2, v3, v4, respectively, which are
used to calculate the barycenric coordinate of p.

measuring the consistency of the local deformation of objects
in the left and right images as

�Dp(IL, IR)=
no∑

i=1

si×
nrow∑

j=1

∥∥(p̃L
ij − p̃R

ij)−Hij(G̃L−G̃R)
∥∥2

(1)

where si is the significance value of object oi; nrow represents
the number of rows in the object oi; and p̃L

ij and p̃R
ij are

the representative pixels of the jth row of the object oi in
the deformed left and right images, respectively (see Fig. 3).
The pixel close to the center of each row within an object is
selected as the representative pixel of that row. G̃L and G̃R are
the representative pixels of the deformed left and right images,
respectively. The vector formed by these two pixels, that is,
(G̃L − G̃R), serves as the deformation pivot of the vectors
(p̃L

ij − p̃R
ij) for the consideration of disparity preservation. In

the implementation, the nonzero vector (pL
ij − pR

ij) closest to
the vector formed by the centers of the left and right images is
selected as the pivot vector. Hij is the similarity transformation
between the vectors (pL

ij − pR
ij) and (GL − GR) in the original

images. Therefore, this energy measures the changes in the
geometric relations of the corresponding rows of an object
during warping. In other words, this energy based on the
concept of consistent deformation of local object can achieve
the goals of disparity preservation and vertically shifting effect
alleviation.

The points pij and G lie within the grids of mesh, denoted
by q(pij) = {vm}4

m=1 and q(G) = {vn}4
n=1. Therefore, pij and G

can be rewritten as a linear combination of the grid’s vertices
using the barycentric coordinate given by

p = b1v1 + b2v2 + b3v3 + b4v4 (2)

where (b1, b2, b3, b4) are the coefficients of barycentric co-
ordinate of p corresponding to the vertices (v1, v2, v3, v4).
The barycentric coordinate is known as an area coordinate.
The coefficients (b1, b2, b3, b4) are proportional to the cor-
responding areas (A1, A2, A3, A4) (see Fig. 4); that is, bk =
Ak/(A1 + A2 + A3 + A4), k = 1 · · · 4. By using the barycentric
coordinate, we can reformulate (1) as

�Dp(ML, MR)=
no∑

i=1

si×
nrow∑

j=1

‖(
4∑

m=1

bL
mṽL

m −
4∑

m=1

bR
mṽR

m)

− Hij(
4∑

n=1

bL
n ṽL

n −
4∑

n=1

bR
n ṽR

n )‖2

(3)

Fig. 5. Illustration of deformation consistency energy term. CL and CR are
the row representative edges, which are used as pivots for consistent row
deformation.

Fig. 6. Illustration of shape deformation energy. C21 is the pivot of the edges
{e1 · · · e7} in the first row of object o2.

where {bL
m}4

m=1, {bR
m}4

m=1, {bL
n }4

n=1, and {bR
n }4

n=1 are the barycen-
tric coordinates of the points pL

ij , pR
ij , GL, and GR, respec-

tively, with respect to the grids {vL
m}4

m=1, {vR
m}4

m=1, {vL
n }4

n=1, and
{vR

n }4
n=1. By using this formulation, we can combine this energy

term with the other terms and then solve the optimization for
the vertices (Ṽ

L
, Ṽ

R
) in the deformed grid meshes rather than

the pixels.
To further address the problem of inconsistent deformation,

deformation consistency energy is introduced in the opti-
mization. This term is formulated by measuring the distance
between the row representative edges of a deformed object in
the left and right images as

�Dc(ML, MR) =
no∑

i=1

nrow∑

j=1

∥∥∥C̃
L

ij − C̃
R

ij

∥∥∥
2

(4)

where C̃
L

ij and C̃
R

ij represent the deformed row representative
edges of the jth row of the object oi in the left and right grid
meshes, respectively (see Fig. 5). Similarly, the edge closest
to the center of a row in an object is suitable to represent that
row; thus, this edge is selected as the row representative edge.
In this manner, the local object is represented by its repre-
sentative edge and the difference between the corresponding
representative edges can measure the local deformation of the
corresponding objects in the left and right images.

The total disparity preservation energy is obtained by sum-
ming up the individual energy terms as

�DP = α × �Dp + (1 − α) × �Dc (5)

where α is the weighting factor of these two disparity preser-
vation terms. In the implementation, the default value of α is
set to 0.5.
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Fig. 7. Comparison of retargeting using our warping method (middle) with and (right) without disparity energy in the optimization. Top row: stereoscopic
images. Middle row: left image with the manually selected feature points. Bottom row: depth distribution of the selected feature points.

Shape preservation energy. To achieve the goal of deforming
high-significance objects as rigidly as possible during warping,
two energy terms, namely shape deformation and line bending,
are defined. In [3], the shape deformation term is defined by
measuring the rigidity of objects as

�Sd(M) =
∑

oi∈O
(si ×

∑

ej∈E(oi)

∥∥ẽj − TijR̃i

∥∥2
) (6)

where si is the significance value of object oi; ẽj represents an
edge in the object oi; R̃i is the representative edge of object
oi; and Tij is the similarity transformation between the edge
ej and the representative edge Ri in the original mesh. This
definition works well for a single image. However, the lack of
consideration of vertically shifting effects makes this definition
inappropriate for stereoscopic images. By considering both the
left and right images and alleviating the vertically shifting
effect, we reformulate (6) as

�Sd(ML, MR) =
∑

oi∈OL∪OR

si ×
nrow∑

j=1

nedge∑

k=1

∥∥ẽijk − TijkC̃ij

∥∥2
(7)

where OL and OR are the object sets in the left and right
images; nrow represents the number of rows in the object
oi; and nedge denotes the number of edge in the jth row of
object oi (see Fig. 6). This energy measures the changes in the
geometric relations of the edges within an object’s row in both
the left and right images during warping. Through consistent

Fig. 8. Consistent shape deformation. From left to right: original stereo-
scopic image pair, grid mesh, and deformed mesh, and retargeting result. The
grid and deformed meshes are visualized by significance values.

row deformation, this energy can address the problems of
inconsistent spatial object deformation and vertical shifting.

To avoid skewed artifacts in the grid meshes, the line-
bending term proposed in [2] is integrated in the optimization.
The skewed artifacts are measured by the bending of grid
lines. A grid is denoted by q : {va, vb, vc, vd} and contains
two horizontal edges (va, vb) and (vd, vc), and two vertical
edges (va, vd) and (vb, vc). This term is defined by measuring
the distance of the y component between the vertices of the
deformed horizontal edges and the distance of the x component
between the vertices of the deformed vertical edges as

�Lb(ML, MR) =
∑

q∈QL∪QR

(
∥∥ṽay

− ṽby

∥∥2
+

∥∥ṽdy
− ṽcy

∥∥2

+
∥∥ṽax

− ṽdx

∥∥2
+

∥∥ṽbx
− ṽcx

∥∥2
).

(8)



764 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 5, MAY 2014

Fig. 9. Retargeting using different values of parameter α.

Fig. 10. Retargeting using different values of parameter β.

The total shape preservation energy is obtained by summing
up the individual energy terms with their weights

�SP = β × �Sd + (1 − β) × �Lb (9)

where β is the weighting factor that balances the contributions
of the shape deformation term and the line bending term. In
the experiments, β is set to 0.5 to take the abovementioned
considerations into account.

C. Minimization of Energy Function

By combining the disparity and shape energies, the final
optimization for the mesh warping is formulated as

arg min
Ṽ

L

,Ṽ
R

(�SP + �DP ) (10)

subject to the constraints of the positions of the boundary
vertices. The top-left vertex position of the stereoscopic image
is fixed in the implementation and all the boundary vertices are
constrained to slide along their respective boundary lines. In
the optimization, a least-squares linear system A[Ṽ

L
Ṽ

R
]T = b

with a sparse design matrix A can be obtained from (10).
This system is solved for the the deformed grid meshes Ṽ

L

and Ṽ
R

as well as for the retargeting images Ĩ
L

and Ĩ
R

by
using an iterative solver called conjugate gradient method. The
iterative process is terminated when the movements of vertices
are smaller than 0.5 pixels.

IV. Experimental Results and Discussion

A. Properties of Proposed Object-Coherence Warping

The proposed warping method has several properties that
demonstrate its potential for content-aware retargeting of
stereoscopic images. First, with the aid of disparity preser-
vation energy, the disparity of stereoscopic image can be
preserved as much as possible. A comparison between the
retargetings with and without the disparity energy is shown in
Fig. 7. The shape of the foreground object is preserved using
the shape-preservation energy; however, the disparity values
and their depth order are incorrect. By contrast, when both
the disparity and shape preservation energies are used, not
only the shapes but also the disparity values are preserved.

Second, our approach is capable of consistently preserving
visually salient objects. With the aid of the object-based
significance map, the grids occupied by an object have the
same significance value. Therefore, the high-significance ob-
ject pairs in the left and right images can be deformed
consistently, and their shapes and disparities can be preserved.
As demonstrated in Fig. 8, the foreground object in the left
and right images is assigned a significance value. Therefore,
this object is consistently deformed, and the shapes are well
preserved in warping.

Third, the proposed warping scheme can ease the difficulty
caused by imperfect segmentation. Accurate segmentation is
difficult and oversegmentation with unfavorable object bound-
aries may occur. Fortunately, the scheme of distortion propaga-
tion in mesh optimization can address the problem of imperfect
segmentation in warping. In addition, in the case of retargeting
with extreme oversegmentation, the smallest object is a pixel,
which means that the retargeting result is similar to that of
pixel-based retargeting.

B. Retargeting Evaluation

Our algorithm is tested on a desktop PC with 2.66 GHz CPU
and 4 GB memory. The computation cost of mesh warping
depends on the number of nonzero entries (denoted as K) in
the design matrix A and the number of iterations (denoted
as T ) in the optimization solver. The time complexity of
our mesh warping is O(K

√
T ), which is the same with the

mesh-warping-based method [3] that use conjugate gradient
method as the optimization solver. For a stereoscopic im-
age of 800 × 600 resolution, the average computation time
for mesh warping is 0.18 s and that for preprocessing is
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Fig. 11. Comparison of shape preservation with the seam-carving-based method (SSC) [13], mesh-warping-based method (SMW) [4], linear scaling (LS),
and the proposed method. The left image and stereoscopic image are shown at the top and bottom, respectively.

6.76 s, including 0.65 s for segmentation and 6.1 s for saliency
detection, which is similar to those of [4] that takes 6.56 s for
preprocessing, including 4.93 s for feature matching and 1.63 s
for saliency detection.

The parameters α and β are the main parameters in our
method. Different parameter values are tested to show the
sensitivity of the retargeting results to the parameters. In our
method, α is the weighting factor for balancing the contri-
butions of the disparity preserving term and the deformation
consistency term. A large value can preserve disparity values
and a small value can address the problem of inconsistent
deformation (see Fig. 9). In the implementation, α is set to
0.5. β is the weighting factor for the shape deformation term
and the line-bending term. From the experimental result shown
in Fig. 10, a large value can force high-significance objects
to become rigid in warping and a small value can alleviate
skewed artifacts. In the experiments, β is set to 0.5 to take
the abovementioned considerations into account. Note that the
parameters α and β are tunable. α = 0.5 and β = 0.5 are the
default values in our retargeting system and this selection is
used in all the experiments.

To give a fair comparison, most images used in re-
lated works are tested in the experiments. In addi-
tion, some tested images are selected from the datasets
CMU/VASC [26] and NVIDIA [27]. Several representa-
tive cases where images have evident foreground objects
and structure lines are shown in Figs. 11 and 12. All
the experimental materials are available on the following
website: http://graphics.csie.ncku.edu.tw/Stereoscopic-Image-
Retargeting. The experimental results are automatically gener-
ated based on the default parameters, that is, grid resolution is
20 pixels × 20 pixels and α = β = 0.5. Our method is com-
pared with the recent seam-carving-based method (SSC) [13]
and mesh-warping-based method (SMW) [4]. In addition, to
further validate the preservation of disparity, our method is
compared with the recent single-view mesh warping method
(MW) [3]. The resolution of the grid mesh in the proposed
method is the same as that in the MW and SMW methods
to ensure objectivity in the comparison. The key to successful
content-aware retargeting of stereoscopic images is the preser-
vation of shape and disparity. We, therefore, conduct the com-

parisons of shape preservation (Fig. 11) and disparity preserva-
tion (Fig. 12). The results shown in Fig. 11 indicate that SSC
generates discontinuous artifacts in visually salient objects be-
cause of the removal of seams, particularly for images contain-
ing dense information. The results shown in Figs. 11 and 12 in-
dicate that the mesh warping methods MW and SMW have the
advantage of absorbing distortion by homogeneous regions.
However, considering only spatial content preservation in MW
leads to unnatural stereoscopic content and the lack of consid-
ering consistent object warping in SMW sometimes results in
apparent deformation on the structure lines, which are sensitive
to human vision. By contrast, our method efficiently eases
the inconsistent deformation and preserves both the shapes
and disparities of objects, leading to pleasing content-aware
retargeting. For more comparisons and experimental results,
please refer to the accompanying and supplemental documents.

In addition to the qualitative analysis, we also conduct a
quantitative analysis. The quantitative analysis is conducted
by utilizing the correlation coefficient, which represents the
statistical relationship between two datasets. Given two sets of
feature point pairs Xi : {pL

k − pR
k }nf

k=1 and Xj : {p̃L
k − p̃R

k }nf

k=1
in the original stereoscopic image and the retargeted im-
age, the correlation coefficient is defined as Corr(Xi, Xj) =
Cov(Xi, Xj)/σXi

σXj
, where Cov(Xi, Xj) represents the covari-

ance between Xi and Xj , σX is the standard deviation of
dataset X, and nf is the number of feature pairs. In addi-
tion, vertical shifting is estimated by measuring the vertical
distances of feature points; that is, Yd =

∑n
i |p̃iy − piy |/n,

where n is the number of feature points. In this experiment,
our method is compared with the related mesh-warping-based
methods, including MW [3] and SMW [4]. Several feature
points in the original stereoscopic image and retargeting results
are selected manually. The correlation coefficients and the
vertical distances of the feature points are calculated. The
results are shown in Table I. This analysis indicates that the
results of MW are comparable to that of SMW for images
containing dense information because MW exhibits better
performance in terms of shape preservation, and SMW has
better performance in terms of disparity preservation and
vertical shifting alleviation. Moreover, our results are closest
to the original stereoscopic images (average Corr = 0.981) and
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Fig. 12. Comparison of disparity preservation with MW [3], SMW [4], and the proposed method. First row: stereoscopic images. Second row: left images
with the selected feature points (marked by colors). Third row: depth distribution of the selected feature points.

have good performance on the alleviation of vertical shifting
(average Yd = 0.699), compared with the results of SMW
(average Corr = 0.880; average Yd = 1.283) and MW (average
Corr = 0.931; Yd = 1.891). Basing on the qualitative and
quantitative analyses, we conclude that our method is superior
to the related methods in terms of content preservation for the
images that contain evident foreground objects and structure
lines.

In this paper, an object-aware retargeting method is pro-
posed. Although object-aware retargeting is not a novel con-
cept, it remains the goal of recent retargeting studies [5]. In
[5], the input stereoscopic image is decomposed into several
layers according to depth and color information. The content
in each layer is resized separately through mesh warping.

This method can address the problem of inconsistent object
deformation. However, separately warping layers may generate
discontinuous artifacts. By contrast, our approach combines
all the object saliency values in a significance map and
continuous mesh warping is applied to the images based on
this significance map. Therefore, similar to the general mesh-
warping-based methods [2], [4], the proposed method does not
suffer from discontinuous warping.

C. Retargeting With cropping

Researchers recently focus on stereoscopic image cropping
[11]. The basic idea is to optimally and consistently crop
the input image pair and then uniformly scale the cropped
images to fit the desired aspect ratio. Combining cropping
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TABLE I

Quantitative Analysis. The Correlation Coefficients Corr and Vertical Distances Yd of Selected Feature Points in Original

Stereoscopic Images and Retargeted Images Generated by MW [3], SMW [4], and Proposed Method Are Shown in This Table. Avg.

and Stdev. Represent Average and Standard Deviation of Corr and Yd

Fig. 13. Combining cropping with the proposed method. Left: original
stereoscopic image. Middle: retargeting using the proposed method with
cropping. Right: retargeting using the proposed method only.

Fig. 14. Over-constrained retargeting. From left to right: original stereo-
scopic image (filled with a foreground object), grid mesh (top) and deformed
grid mesh (bottom) visualized by the significance value, our result, and linear
rescaling.

with mesh warping or seam carving in retargeting has been
proven to improve the retargeting quality significantly [28],
[29]. Integrating cropping into the proposed scheme is easy.
Similar to [11], optimal cropping is performed first and the
proposed warping approach is applied to further resize the
cropped results to fit the desired aspect ratios. Fig. 13 shows
the experiment that integrates cropping into the proposed
method. The retargeting quality is improved, especially the
aspect ratio of the foreground object.

D. Limitation

Similar to previous mesh-warping-based methods, our
method tends to overconstrain or underconstrain the con-
tent when the image is filled with global structure lines
(see Fig. 14) or when the segmented objects have similar

significance values. The results are similar to linear rescaling
because all the structure lines or objects are deformed rigidly.
One possible solution to this problem is to provide a user
interface for users to specify the important content to preserve.
Another alternative is to integrate linear rescaling in the
retargeting scheme. When over- or underconstraining occurs,
linear rescaling is performed instead of mesh warping.

V. Conclusion

This paper introduces a novel object-coherence warping
method for content-aware stereoscopic image retargeting. The
main idea is to utilize the object correspondences in the left
and right images in retargeting. The object correspondences
allow the generation of an object-based significance map
and the consistent preservation of objects during warping.
The input stereoscopic image pair is segmented into several
object pairs and then each pair is assigned a significance
value for consistent object warping. In the optimization of
mesh warping, the disparity preservation constraints efficiently
preserve the disparity values and force visually salient ob-
jects to undergo as-consistent-as-possible deformation, and
the shape preservation constraints preserve the shapes of
visually salient objects. Furthermore, the optimization with a
significance map propagates the distortions to the homoge-
nous and low-significant regions. These properties efficiently
ease the distortions in the disparities and shapes of objects
caused by inconsistent warping. The comparisons, including
the qualitative and quantitative analyses, show the superiority
of the proposed method over the related methods in terms
of consistency of object deformation. In the future, we plan
to extend our retargeting scheme to stereo videos and solve
this problem in 3-D volumetric space. In addition, we plan to
integrate cropping or seam craving in our scheme to improve
the retargeting quality.
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