
Coherent Time-Varying Graph Drawing
with Multifocus+Context Interaction

Kun-Chuan Feng, Chaoli Wang, Member, IEEE, Han-Wei Shen, and

Tong-Yee Lee, Senior Member, IEEE

Abstract—We present a new approach for time-varying graph drawing that achieves both spatiotemporal coherence and

multifocus+context visualization in a single framework. Our approach utilizes existing graph layout algorithms to produce the initial

graph layout, and formulates the problem of generating coherent time-varying graph visualization with the focus+context capability as a

specially tailored deformation optimization problem. We adopt the concept of the super graph to maintain spatiotemporal coherence

and further balance the needs for aesthetic quality and dynamic stability when interacting with time-varying graphs through

focus+context visualization. Our method is particularly useful for multifocus+context visualization of time-varying graphs where we can

preserve the mental map by preventing nodes in the focus from undergoing abrupt changes in size and location in the time sequence.

Experiments demonstrate that our method strikes a good balance between maintaining spatiotemporal coherence and accentuating

visual foci, thus providing a more engaging viewing experience for the users.

Index Terms—Graph drawing, time-varying graphs, spatiotemporal coherence, focus+context visualization.

Ç

1 INTRODUCTION

GRAPH drawing plays an increasingly important role in
data understanding for many science and engineering

disciplines such as biology, archeology, information retrie-
val, and VLSI circuit design. More recently, it has also been
applied to problems in various areas of social computing
such as visualizing online social networks and analyzing
terrorist networks and organizations. To date, existing
graph drawing algorithms are primarily focused on static
graphs. The more challenging issue of time-varying graph
drawing, however, has not received full attention.

Many graphs are dynamic in nature. Examples include
event graphs extracted from archives showing event
connection and evolution, processor communication
graphs obtained from a supercomputer run, and friend-
ship networks inferred from a social website. A critical
consideration when designing a time-varying graph layout
is to maintain a certain level of spatiotemporal coherence
in the visualization of nodes and edges so that their
temporal evolution and correlation can be clearly revealed.
It is convenient to simply apply a static graph layout
algorithm to graphs of individual time steps, either
separately or incrementally. However, this treatment

cannot guarantee spatiotemporal coherence and a balanced
drawing, and hence, the resulting visualization may suffer
from undesired artifacts such as flickering or popping (i.e.,
abrupt changes in the visualization of nodes or edges with
respect to size or location). These artifacts make it difficult
for viewers to track the changes and thus hinder data
understanding.

Another critical consideration for handling time-varying

graphs with ever-growing size and complexity is to provide

the capability of focus+context (FþC) viewing. FþC

visualization stems from the need to show, within a limited

display area, both overview (context) and detailed (focus)

information simultaneously. Such a capability allows the

easy tracking of individual nodes of interest and inferring

relationship changes, making it particularly important for

the visual analysis of large-scale time-varying graphs

through interaction. Although there exist solutions for

FþC visualization of static graphs [13], [25] or static data

such as polygons [30] or volume data [31], coherent FþC

visualization of time-varying graphs has not been fully

investigated.
We propose a novel approach for time-varying graph

drawing that offers a more engaging viewing experience for

users through coherent FþC visualization. Specifically, we

formulate the problem of time-varying graph layouting as a

deformation optimization problem with an initial layout

generated from an existing graph layout algorithm. To

generate desired layouts with an FþC effect, we incorporate

the concept of the super graph [6] and solve a series of

spatiotemporal coherence constraints to preserve coherent

contents. Our method allows the users to specify multiple

foci in their visualization. We produce a smooth FþC

visualization by preventing the nodes in the foci from

showing abrupt changes in size and location over time

while keeping the context information as stable as possible.

1330 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 8, AUGUST 2012

. K.-C. Feng and T.-Y. Lee are with the Computer Graphics Group/Visual
System Lab, Department of Computer Science and Information Engineer-
ing, National Cheng Kung University, No. 1 University Road, Tainan 701,
Taiwan, ROC. E-mail: stevenf3@gmail.com, tonylee@mail.ncku.edu.tw.

. C. Wang is with the Department of Computer Science, Michigan
Technological University, Houghton, MI 49931.
E-mail: chaoliw@mtu.edu.

. H.-W. Shen is with the Department of Computer Science and Engineering,
The Ohio State University, 2015 Neil Avenue, Columbus, OH 43210.
E-mail: hwshen@cse.ohio-state.edu.

Manuscript received 17 Aug. 2010; revised 1 May 2011; accepted 4 July 2011;
published online 21 July 2011.
Recommended for acceptance by H. Hauser.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2010-08-0189.
Digital Object Identifier no. 10.1109/TVCG.2011.128.

1077-2626/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

We demonstrate the efficacy of our method with three time-
varying graph data sets drawn from different applications.

2 RELATED WORK

Designing effective and efficient graph layouts is one of the
central tasks for the graph drawing community. It is also an
important topic in information visualization and has been
an active area of research for many years. Closely related to
our work are those on time-varying graph drawing and
FþC graph visualization. In addition, static graph layout
algorithms are also related since dynamic graph drawing
can often be constructed by leveraging static graph drawing
algorithms with additional temporal components.

2.1 Layout Algorithms for Static Graphs

Many previous layout algorithms for static graphs are
based on physical analogies such as force or energy. These
methods model the graph as a system of physical objects
that interact with each other. Optimization techniques are
used to minimize the total energy so that the graph
converges to an equilibrium state that corresponds to a
desired graph layout [1]. Classical examples include the
force-directed layout algorithm introduced by Eades [7], the
Kamada-Kawai layout [18], and the Fruchterman-Reingold
layout [10]. More complex models were also proposed such
as LinLog (a clustering energy model) [21] and stress
majorization [15]. Researchers also considered node sizes in
graph drawing for overlap removal by simply using
increased repulsive forces [17] or leveraging the proximity
stress model [14].

2.2 Layout Algorithms for Dynamic Graphs

Dynamic graph drawing deals with graphs that evolve over
time. To display dynamic graphs, a good layout should
strike a good balance among several goals such as
preserving the mental map, reusing layouts from previous
time steps, and achieving good aesthetic quality [3], [5], [6].
The term mental map refers to the abstract structural
information a user forms by looking at the graph layout.
Misue et al. [20] described three mental map models, i.e.,
the orthogonal order, proximity, and topology models, that
measure the extent by which the graphical attributes have
been changed due to a layout adjustment. While two
empirical analyses on the mental map by Purchase et al.
[23], [24] lead to somewhat contradictory suggestions, we
consider that maintaining the mental map and allowing the
user to fine tune the degree of mental map preservation are
essential. Naı̈vely applying a static graph layout algorithm
to graphs of individual time steps often fails to preserve the
mental map well, which makes it difficult for the viewers to
track the evolution of graphs.

Generally speaking, dynamic graph layout algorithms
can be either offline where the full sequence of graphs is
known beforehand, or online where the full graph sequence
is not known in advance. For the offline version, it is
common to build a global layout for the whole sequence
and then derive the layout of each graph from the global
layout. For example, Diehl et al. [5], [6] built a super graph as
a rough abstraction of the whole graph sequence. Every
graph in the sequence is a subset of the super graph. For the

online version, it is typical to use the layout of one time slice
as a starting point to create a new layout for the next time
slice, and then further improve the new layout for better
aesthetic quality. Solutions have been proposed for drawing
online directed acyclic graphs [22], dynamic clustered
graphs [8], and orthogonal and hierarchical graphs [16].
Brandes and Wagner [2] introduced a Bayesian approach, in
conjunction with force-directed techniques, to generate
online dynamic graphs. Frishman and Tal [9] presented
an efficient GPU-based solution to compute stable and
aesthetic layouts for online dynamic graphs. To maintain
the mental map, they assigned a movement flexibility
degree to each node so that nodes with large displacement
are focused.

2.3 Focus+Context Techniques for Graph Drawing

FþC techniques have been used for various types of
visualization including trees and graphs. This approach
displays the foci together with the context which consists of
all visual elements or a selected subset of elements. FþC
techniques deal with what elements should be selected to
constitute the context and how the elements should be
presented [12]. It is desired to show places near the focal
nodes in greater detail while displaying remote regions in
successively less detail [11]. Geometric distortion is a
typical means to handle the layout in FþC visualization.
Based on the visual metaphor of a rubber sheet, these
techniques distort the information space using a geometric
mapping. As a result, more space is allocated to the foci and
nodes nearby, while nodes further away are squeezed.
These techniques are exemplified by Sarkar’s graphical
fisheye [25] and “stretching the rubber sheet” [26], and
Gansner et al.’s topological fisheye [13].

2.4 Our Contribution

To achieve FþC visualization, current techniques make use
of distortion either in the geometry space by stretching
some edges and shortening others, or in the image space by
fisheye transformations and the like. Yet, both have
disadvantages: the geometric distortion cannot push apart
unconnected nodes, and the image distortion cannot
guarantee to preserve edge drawing styles, such as
orthogonal drawings. We present a new way to achieve
both by distorting not the graph layout itself, but a
triangulated, meshed version of it in the geometry space.

In our approach, the user interactively determines one or
multiple foci in the graph for dynamic FþC visualization
via optimized deformation. We maintain the mental map of
time-varying graphs while providing the flexibility to fine
tune the degree of mental map preservation so that different
viewers can adjust according to their preferences for
effective observation. Unlike typical fisheye techniques, by
performing a globally optimized deformation of the entire
graph, our FþC technique can effectively expand the graph
to occupy the available drawing region. Another distinction
is that our approach can well preserve the overall graph
structure by maintaining relative relationships among
important nodes regardless whether they are in the focus
or not while squeezing regions of low importance as much
as possible. To the best of our knowledge, our work is the
first that addresses the issue of multiple FþC visualization

FENG ET AL.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 1331

in offline, dynamic graph drawing. We point out that due to
the use of a time window for the super graph generation,
our approach is also suitable for online dynamic graph
drawing, provided that the time steps within the sliding
time window can be cached during the online processing.

3 OUR APPROACH

3.1 Overview

We sketch an overview of our approach in Fig. 1. Our
method takes the input graph and applies an existing
graph layout algorithm to generate the initial layout. To
account for temporal coherence, we leverage the idea of the
super graph [6] to build a sequence of graphs for each time
window, from which we extract an initial graph layout for
every time step. Inspired by Wang et al. [30], [31], we
formulate FþC visualization as a deformation optimization
problem, thus allowing the user to magnify details in
regions of interest while shrinking the rest to keep the
entire graph displayed on the screen. There is an issue
when expanding the graph: if we only stretch the edges
connecting the nodes of interest, we may not be able to
pull those nodes apart as desired. This is because some of
the nodes in the spatial neighborhood may not have edges
connecting to those nodes that are intended to be
expanded. To address this issue, we add an intermediate
step that triangulates the initial graph into a triangle mesh,
and then deforms the mesh to achieve the desired FþC
visualization. The deformation solves a constrained opti-
mization based on the significance analysis of nodes,
edges, and faces of the underlying triangle mesh to
minimize the energy of the graph.

In the following discussion, we denote the time-varying
graph as Gt ¼ <Vt; Et> where t 2 T ¼ ½1; n� represents the
time step, and Vt and Et are the sets of nodes and edges at
time step t, respectively. The node i and the edge
connecting nodes i and j at time step t are denoted as
vi;t and eij;t, respectively. The face i at time step t in the
triangle mesh is denoted as fi;t. In the original graph, we
assume that each edge eij;t carries a weight weij;t. We also
assume that each node vi;t carries a weight wvi;t. If no such
information is provided, wvi;t is 1 for all the nodes. Both
weij;t and wvi;t are used to define the importance of nodes
in the triangle mesh. We further derive the importance of
faces and edges accordingly from the importance of the
nodes. Note that weights are associated with nodes and
edges in the original graph while importance values are

associated with nodes, faces, and edges in the triangle
mesh. We opt to define node importance first and then
derive face and edge importance. The rationale is that node
positions are essential for determining a graph layout and
faces and edges are auxiliary information used in the
triangle mesh deformation.

3.2 Initial Layout

Our algorithm starts with an existing layout algorithm to set
up an initial layout for the graph in every time step. In this
paper, we utilize the Fruchterman-Reingold layout [10] to
generate the initial graph. To produce a temporally coherent
layout, we divide the entire time sequence into a number of
time windows where each window consists of several
consecutive time steps. For each time window, we utilize
the super graph [6] to generate a force-directed layout, from
which an initial layout for every time step is extracted.

To create the time window, we can simply partition the
time sequence uniformly. Another way is to analyze the
graph information at each time step and partition the time
sequence nonuniformly by taking into account the nature
of the time-varying graph. Similar to the importance-
driven time-varying data visualization work presented by
Wang et al. [28], we compute the conditional entropy (2)
for each time step with respect to its neighboring time
steps and derive the importance value for each time step

It ¼
Xt�1

k¼t�m
wkHðXtjYkÞ; ð1Þ

and

HðXjY Þ ¼
X
x2X

X
y2Y

pðx; yÞ log
pðyÞ
pðx; yÞ ; ð2Þ

where It is the importance value of time step t, m is the
window size considered, and wk (in ½0; 1�) is the weight
associated with time step k. The closer k to t, the larger the
weight.

Pt�1
k¼t�m wk ¼ 1. In our case, the entropy is evaluated

based on the distribution of node importance defined in
Section 3.4 (5). In (2), pðx; yÞ is the joint probability of node
importance at time steps of x and y, and pðyÞ is the marginal
probability of node importance at the time step of y. A
higher (lower) importance indicates a higher (lower) degree
of change compared with its neighboring time steps, and
thus the corresponding length of the time window should
be smaller (larger). Such a nonuniform partition evenly

1332 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 8, AUGUST 2012

Fig. 1. An overview of our approach to FþC visualization of time-varying graphs. Our approach leverages an existing force-directed graph layout
algorithm to produce initial layouts and performs significance analysis on nodes, faces, and edges of the triangulated version of initial layouts. FþC
visualization is achieved through optimization by minimizing an energy function.

distributes the variation of the graphs among all time
windows, which makes it more amenable to preserve the
temporal coherence for the initial layout generation and
subsequent deformation. To ensure the continuity between
time windows, we let two consecutive time windows share
an overlapping time interval and the time steps falling into
the interval keep their common nodes in the same positions.
Fig. 3 illustrates such an example.

3.3 Graph Triangulation

From the initial graph layout produced for each time step,
we use the node positions to generate a constrained
conforming Delaunay triangulation (CCDT) mesh [27].
Fig. 2 shows an example of the resulting triangle mesh.
With the CCDT, all the triangles produced are well
behaved, i.e., they have similar areas. Based on the input
of desired triangle area and the maximum angle within any
triangle, we can determine a suitable number of triangles
accordingly. Additional vertices, called Steiner points,
could be inserted to meet the constraints of triangle area
and angle. Using the triangle mesh rather than the initial
graph for FþC adjustment enables us to generate desirable
effects while maintaining a satisfying level of spatiotem-
poral coherence of the time-varying graph.

Since our graph is embedded in the triangle mesh where
the FþC distortion is performed, each node can still be
expanded or shrunk even though it is not connected to its
spatially neighboring nodes in the original graph. Fig. 4
shows two examples of an FþC adjustment using initial
graph edges and triangle mesh edges, respectively. In both
examples, using triangle mesh edges more effectively
expands the neighborhood of nodes with higher importance
and better maintains the consistency of relative positions
among nodes. Note that in Figs. 4b and 4c, there is no

adjacent edge between the red and orange nodes. In Fig. 4b,
FþC adjustment using the initial graph does not work
when two neighboring nodes in the layout are not adjacent.
Therefore, both the red and orange nodes are squeezed
together in Fig. 4b but they are properly separated in Fig. 4c.
We can observe similar results in Figs. 4e and 4f.

3.4 Significance Analysis

3.4.1 Node Importance

To allow the users to clearly capture the characteristics of
the time-varying graph and achieve a desired FþC
visualization, we define the importance for every node in
the graph at each time step. Specifically, we consider two
properties for a node: centrality and authority. The centrality
of a node vi;t is defined as

Cðvi;tÞ ¼ degðvi;tÞ ¼
X
j

"ij;t; ð3Þ

where degðvi;tÞ returns the degree of node vi;t. In an
undirected graph, it is the number of edges incident to
vi;t. "ij;t ¼ 1 iff there is an edge between vi;t and vj;t in the
graph; otherwise, "ij;t ¼ 0. The authority [19] of a node vi;t is
defined as

Aðvi;tÞ ¼
X
vj;t2Vt

we2
ij;twvj;t; ð4Þ

where weij;t is the weight of edge eij;t in the original graph
and wvj;t is the average of edge weights incident to node vj;t.
vi;t and vj;t are connected by edge eij;t. The authority of a
node indicates its representativeness. The squared weights
for edges give preference to nodes that are very represen-
tative of some nodes over those that are moderately
representative of all nodes. We use the mean weight to
ensure that the most central nodes are also representative of
other less central nodes.

Finally, we define the importance of a node vi;t as

Iðvi;tÞ ¼ �Cðvi;tÞ þ �Aðvi;tÞ þ �wvi;t; ð5Þ

where �, �, and � are all in ½0; 1� and �þ � þ � ¼ 1. wvi;t is
the weight of vi;t carried from the input of the original
graph. Note that we only compute the importance for nodes
in the original graph. For other pseudo nodes introduced in
the triangle mesh, their importance values are zero.

FENG ET AL.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 1333

Fig. 3. An illustration showing the importance values of individual time
steps as dots and the nonuniform partition of the entire time sequence
into seven overlapping time windows. The horizontal direction is for time
step and the vertical direction is for importance value. The size of
overlapping time intervals is 2 in this example.

Fig. 2. (a) The node (edge) importance is mapped to visual properties such as size (thickness), color, and opacity. The two transfer functions in the
corner are for nodes and edges, respectively. (b) The underlying triangle mesh is displayed where we map face importance to color and edge
importance to thickness.

In practice, our deformation is based on node impor-
tance values at every time step. We notice that if a node at
two consecutive time steps has significantly different
importance values, then the resulting deformation would
be flickering. To alleviate this problem, we blend the
importance value of a node with its values at previous
m� 1 time steps

Iðvi;tÞ ¼
Xt

l¼t�mþ1

wlIðvi;lÞ; ð6Þ

where m is the size of blending window, wl (in ½0; 1�) is the
normalized weight for time step l. The closer l to t, the
larger the weight.

Pt
l¼t�mþ1 wl ¼ 1.

3.4.2 Face Importance

For each face in the triangle mesh, we define its importance
as

Iðfi;tÞ ¼ max
vj;t2Vt

Iðfi;t; vj;tÞ; ð7Þ

and

Iðfi;t; vj;tÞ ¼
0; Iðvj;tÞ ¼ 0;
0; ? ðvj;t; fi;tÞ > e=2;

Iðvj;tÞ
�

1� ?ðvj;t;fi;tÞe=2

�
; otherwise;

8><
>:

ð8Þ

where ? ðvj;t; fi;tÞ is the distance from vj;t to the center of
mass in face fi;t and e is the average edge length computed
from the original graph. The rationale for (8) is that we only
consider the face importance for a contributing node if the

node’s importance is nonzero and the distance from the

node to the center of mass of the face is sufficiently small.

3.4.3 Edge Importance

With the face importance, the importance of an edge eij;t in

the triangle mesh can be defined as the average of the

importance of its incident faces. That is,

Iðeij;tÞ ¼
P

fk;t2Feij;t Iðfk;tÞ
kFeij;tk

; ð9Þ

where Feij;t is the set of faces incident to edge eij;t. For the

triangle mesh, kFeij;tk is 2 if eij;t lies inside of the mesh and

1 if eij;t lies on the mesh boundary.
In Fig. 2, we illustrate a graph where we map the

importance value of nodes/edges to their sizes/thicknesses,

colors, and opacities. More important nodes are drawn with

bigger circles and more opaque colors. More important

edges are drawn with thicker lines and more opaque colors.

The triangle mesh shows the importance of faces and edges.

Such a visualization allows important nodes, edges, and

faces to stand out as the foci. The users can adjust the

importance values for nodes or edges during interaction.

For example, the users may choose some nodes as the foci

and the importance values of these nodes get increased to

reflect user preference for the following optimized FþC

visualization.

3.5 Optimized FþC Visualization

The result of the significance analysis guides the following

FþC visualization. The key to achieve a smooth FþC

visualization lies in maintaining the continuity and relative

relationships among nodes and edges. We take into account

1334 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 8, AUGUST 2012

Fig. 4. (a) Initial graph (important nodes shown in red). (b) FþC adjustment using the initial graph edges. (c) FþC adjustment using the triangle mesh
edges which allows the nodes close to important nodes to expand as well. (d) Initial graph. (e) FþC adjustment using the initial graph edges. (f) FþC
adjustment using the triangle mesh edges which avoids the drastic change of relative positions among nodes.

the following conditions and constraints to define our
objective energy function.

3.5.1 Aesthetic Balance Adjustment

Although using the super graph gives a convenient solution
that achieves temporal coherence, the resulting initial graph
layout for every time step may not have a good balance
between aesthetic quality and dynamic stability. To
improve this, we add the following constraint to let the
area of each face in the triangle mesh match its importance

Afi;t ¼ A
Iðfi;tÞP

fj;t2Ft Iðfj;tÞ
; ð10Þ

where Afi;t is the area of face fi;t, A ¼ w� h is the area of
the drawing region (w and h are the width and height,
respectively), and Iðfi;tÞ is the importance of face fi;t (7). To
expand each face to match the desired area Afi;t, we adjust
each of its edges to an optimal length

lðeij;tÞ ¼
ffi
4ffiffiffi
3
p A

Iðeij;tÞP
fk;t2Ft Iðfk;tÞ

s
; ð11Þ

where Iðeij;tÞ is the importance of edge eij;t (9). In (11), we
want each triangle area to match an optimal area Afi;t,
assuming it is an equilateral triangle. We can add a
constraint to approach an equilateral triangle when gen-
erating the CCDT mesh. In addition, since each edge eij;t
can be shared by one or two triangles, we compute its
optimal length weighted by Iðeij;tÞ, i.e., the average
importance of adjacent faces, in (11). We now add the
following constraint:

Da ¼
X
t2T

X
eij;t2Et

ke0ij;t � lðeij;tÞêij;tk
2; ð12Þ

where e0ij;t is the deformed version of eij;t and êij;t is the unit
vector of eij;t. Fig. 5 shows an example graph before and
after aesthetic balance adjustment. The graph after adjust-
ment introduces dynamic layout changes which means that
the same node in different time steps may not stay at the
same position. But the spatiotemporal coherence is still
preserved as our optimization operates on all time steps in
each time window simultaneously. Expanding triangle
faces better utilizes the drawing area and allows us to
improve the aesthetic quality.

3.5.2 Weighted Edge Expansion

Recall that we compute the importance value for every
edge in the triangle mesh, i.e., Iðeij;tÞ in (9). Let us denote s
as a scaling factor given by the user during graph
expansion for FþC visualization. In general, we have
s > 1, and the larger the value of s, the higher the degree
of expansion applied to the nodes in the focus. For edges
with higher importance values, we need to expand them
more compared with edges with lower importance values.
In our energy model, we want to minimize the following
term related to the graph edges:

De ¼
X
t2T

X
eij;t2Et

Iðeij;tÞke0ij;t � stsðeij;tÞlðeij;tÞêij;tk
2; ð13Þ

where

sðeij;tÞ ¼ 1þ Iðeij;tÞ2ðs� 1Þ:

In (13), e0ij;t is the deformed version of eij;t, êij;t is the unit

vector of eij;t, and lðeij;tÞ is the optimal length of edge eij;t.

sðeij;tÞ indicates the expected scaling factor associated with

edge eij;t and is computed according to user specified s. st is

an unknown scaling factor associated with time and is

initialized as 1. If sðeij;tÞ is too large, the resulting node

position can be placed outside of the drawing area. We can

avoid this by adjusting st to a value less than 1. If the

importance of an edge approaches zero, the edge keeps its

original length. Fig. 5 shows an example graph before and

after weighted edge expansion. It is clear that the expansion

allows edges with higher importance values to expand

while edges with lower importance values are shrunk. As a

result, nodes with higher importance values are highlighted

as nodes with lower importance values are pushed aside.
In the above FþC scenario, after the user specifies the

scaling factor s, our algorithm first computes an initial

scaling factor sðeij;tÞ for each edge, i.e., weighted by its

importance, and then computes the optimized scaling

value. Another useful FþC scenario is to allow the user to

assign the scaling factor s to some nodes of interest directly.

Then, we assign 1, i.e., the maximum importance value, in

(6) for each selected node. Finally, we apply the same

principle described above to perform FþC visualization.

FENG ET AL.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 1335

Fig. 5. (a) shows the graph of a time step extracted from the super
graph. (b) is the corresponding triangle mesh of (a). (c) and (d) are the
graph and the triangle mesh after aesthetic balance adjustment,
respectively. (e) and (f) are the graph and the triangle mesh after
weighted edge expansion, respectively. s ¼ 10 in this example.

3.5.3 Temporal Coherence Preservation

To maintain temporal coherence in the resulting time-
varying graph, nodes with higher importance values should
keep their locations as stable as possible. We add the
following energy term to make sure that nodes in the focus
do not move too much accumulatively over the time series

Dt ¼
Xn�1

t¼1

X
vi;t2Vt

Iðvi;tÞkv0i;t � vi;tk
2; ð14Þ

where Iðvi;tÞ is the importance of node vi;t and v0i;t is vi;t’s
new position, i.e., the deformed version.

3.5.4 Boundary Constraint

The boundary constraint states that during the deformation,
nodes on the boundary of the drawing area at the previous
iteration are forced to keep their positions on the boundary
at the current iteration. That is,

v0i;t;y ¼
0; vi;t;y ¼ 0;
h� 1; vi;t;y ¼ h� 1;

�
ð15Þ

and

v0i;t;x ¼
0; vi;t;x ¼ 0;
w� 1; vi;t;x ¼ w� 1;

�
ð16Þ

where v0i;t;x (vi;t;x) and v0i;t;y (vi;t;y) are the x- and y-coordinates
of node v0i;t (vi;t), respectively, w and h are the width and
height of the drawing area, respectively. Together with st in
(13), this boundary constraint ensures that no node goes out
of bound and the graph is kept within the rectangular
drawing area during FþC adjustment.

3.5.5 Overlapping Constraint

The overlapping constraint states that the positions of nodes
in the overlapping portion of two consecutive time
windows should remain unchanged. That is,

vi;t;wj ¼ vi;t;wjþ1
; ð17Þ

where vi;t;wj and vi;t;wjþ1 denote the positions of node vi;t in
the time windows wj and wjþ1, respectively. Our layout
optimization operates on each time window one by one.
This overlapping constraint is to ensure that temporal
coherence among nodes between neighboring time win-
dows is preserved.

3.5.6 Objective Energy Function

We define the objective energy function as

argminVt
�
c1Da þ c2De þ c3Dt

�
; ð18Þ

where c1, c2, and c3 are all in ½0; 1� and c1 þ c2 þ c3 ¼ 1. Our
goal is to minimize the energy function under the three
constraints stated above, and to achieve a smooth FþC
visualization of the time-varying graph. As sketched in
Algorithm 1, we iteratively solve for the unknown node
positions V0 in a least-squares sense, where A represents
the coefficients of unknown node positions, V represents
the node positions solved in the most recent iteration, and
BðVÞ is a vector function of V. In practice, we set c ¼ 0:7
which produces good results for all graphs we experimen-
ted with. To solve the linear least-squares problem, we
apply the GPU-based conjugate gradient solver [4] with a

multigrid strategy, which is more memory and time
efficient than a direct solver.

Algorithm 1. LINEARSYSTEMSOLVER (A;V0; BðVÞ)
1: Use node positions in the initial layout at each time step

as the initial guess for the first iteration

2: done(false{done indicates whether more iterations

are needed or not}

3: while done ¼ false do

4: Use the current iteration result V to solve the
unknown node positions V0 constrained by the

boundary and overlapping conditions

5: if any node’s new position is beyond the drawing

region then

6: Adjust st to pull the node position back to stay

within the drawing region

7: else

8: if each node’s position change between the
current and previous iterations is less than one

pixel then

9: done(true

10: end if

11: end if

12: V0 ¼ c�V0 þ ð1� cÞ �V

13: end while

4 RESULTS

We experimented with three time-varying graphs to
demonstrate the effectiveness of our approach. In the
following, we describe our data sets and test environment,
followed by visualization results. For a better impression of
our method and results, we refer the readers to the
supplementary video, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2011.128. In addition, the readers can
find high-resolution video clips at http://graphics.csie.
ncku.edu.tw/Time_varying_Graph/.

4.1 Data Sets

We acquired three time-varying graph data sets from
different applications which we describe in the following.

4.1.1 Enron E-Mail

This data set is provided by the UC Berkeley Enron e-
mail analysis project. The data set contains e-mail
communication records at Enron over a couple of years.
We extracted the company’s intracommunication records
and built a time-varying graph with each time step
corresponding to one month’s statistics. This gave us
38 time steps with 151 employees. At each time step, each
node represents an employee and the weight of each edge
is the number of e-mails between the two employees over
that month.

4.1.2 DBLP Coauthorship

We built this data set from the search results of the DBLP
Computer Science Bibliography. We searched one influen-
tial author in our field and her coauthors as well as her
coauthors’ coauthors. We built a time-varying graph with
each time step corresponding to one year’s statistics. This

1336 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 8, AUGUST 2012

gave us 31 time steps and a total of 873 authors. At each
time step, each node represents an author and the weight of
each edge is the number of publications coauthored by the
two authors accumulated up to that year. This graph grows
as the time step increases.

4.1.3 Astronomy Tag

We built this data set from an astronomy archive maintained
by NASA and Michigan Tech. Everyday, the website
features a new astronomy picture along with a paragraph
of explanation and a list of metatagged keywords. We
extracted all tags during the year 1998 and built two time-
varying graphs where each time step corresponds to the
statistics of one day (week). This gave us 365 (52) time steps
with 329 tags. At each time step, each node represents a tag
and the weight of each edge is the number of co-occurrence
of the two tags accumulated up to that day (week).

4.2 Timing Performance and Displacement
Comparison

We utilized a GPU implementation of the concurrent
number cruncher (CNC) sparse solver [4] to solve the linear
system. The CCDT mesh was generated following the work
of Shewchuk [27]. All tests were run on a PC with an Intel
2.67 GHz CPU, 8 GB memory, and an nVidia GTX 295
graphics card. In Table 1, we report the timing breakdown
for the three data sets. As we can see, the time to perform
mesh deformation dominates the total computation time. For
mesh deformation, the main limiting factor is the number of
time steps. This is evident by comparing the performance
results for the two versions of the astronomy tag data set.

We set the window size to 1 for the astronomy tag data
set. This is mainly due to the reason that this data set grows
as the time step increases. That is, the graph of the current
time step is updated from the graph in the previous time
step with some newly added nodes and edges. For this kind
of time-varying graph, if we use a window size larger than
1, the initial layouts of later time windows are strongly
influenced by the layouts of previous windows (due to the
need to maintain temporal coherence between windows).
This may lead to an undesired layout quality for later time
windows. The DBLP coauthorship data set also has this
issue. But such an influence is not as significant because the
number of time steps is relatively small.

In Table 2, we compare the averages of accumulated
displacements for all nodes and for nodes with importance
values larger than 0.8. As we can see, the naı̈ve Fruchterman-
Reingold layout incurs the most node displacement, making
it very difficult for users to track changes. The incremental

Fruchterman-Reingold layout, where node positions in the
previous frame are used as the input to decide node
positions in the current frame, reduces the node displace-
ment substantially. Our approach produces an even smaller
node displacement with the addition of aesthetic balance
adjustment. Introducing FþC distortion brings larger dis-
placements. However, when temporal coherence is also
considered, the average displacement is fairly small in
general. Our results accentuate nodes in the focus and
significantly reduce the average node displacement, thus
offering a more engaging experience for users.

4.3 Significance Adjustment

We allow the user to adjust the weights for node authority
and centrality (5) to highlight different aspects of the graph.
In Fig. 6, we show two examples with one favoring node
authority (� ¼ � ¼ 0:5, � ¼ 0:0) and the other favoring node
centrality (� ¼ � ¼ 0:5, � ¼ 0:0). The initial graph layout is
the same while the resulting layouts are different. Adjusting
these parameters allows the user to observe different
characteristics of the graph accordingly. In addition,
blending node importance using a time window can
generate smooth layout results over time. The larger the
size of the time window, the smoother the resulting time-
varying graph. Fig. 7 gives such an example.

4.4 Time Budget Allocation

When a time-varying graph consists of a large number of
time steps, we can perform importance-driven time-
varying graph visualization by allocating a given time
budget for animation based on importance values of time
steps. That is, we can slow down the animation when we
encounter important time steps (their conditional entropies
with respect to neighboring time steps are high), and
speed up the animation when we encounter nonimportant
time steps. In the supplementary video, which can be
found on the Computer Society Digital Library, we show a
side-by-side comparison between uniform and impor-
tance-driven time budget allocation. As we can see, this
importance-driven technique allows us to observe the
graph better as more animation time is spent on more
important time steps (i.e., their difference with respect to
neighboring time steps is larger thus demanding more
animation time for clear observation).

FENG ET AL.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 1337

TABLE 1
The Timing of the Three Time-Varying Graph Data Sets

The time reported is the computation time for all time steps.

TABLE 2
Comparison of Average Node Displacement (in Pixel)

for All Nodes and Nodes with High Importance
Values (>0:8)

FR-layout: Fruchterman-Reingold layout. AB: Aaesthetic balance. FþC:
focus+context. TC: temporal coherence.

4.5 FþC Visualization

In Fig. 8, we show the comparison of the astronomy tag data
set with the initial graph layout extracted from the super
graph, the adjusted layout, and the final layout after mesh
deformation. For better observation, we highlight important
nodes with a halo. The area of a halo is proportional to the
node’s importance value, indicating its significance. Com-
pared with the initial layouts, the final layouts better utilize
the screen space to highlight the significant nodes in the
FþC visualization, leading to a more effective way of
tracking important nodes over time and a better under-
standing of the overall time-varying graphs. Figs. 9 and 10
show additional results with the other two data sets.
Another nice feature we provide is multi-FþC visualiza-
tion. In this scenario, the user specifies multiple foci in the
graph. We update the significance accordingly and produce
graph visualization with multiple foci. Fig. 11 shows such
an example.

4.6 Mental Map Preservation

Our framework allows the user to fine tune the three
parameters in (18) (c1 for aesthetic balance, c2 for FþC
visualization, and c3 for temporal coherence) to adjust the
degree of mental map preservation. In the supplementary
video, we show a comparison among low, medium, and
high degrees of mental map preservation with
ðc1; c2; c3 ¼ 0; 1; 0Þ, ðc1; c2; c3 ¼ 1; 0; 0Þ, a n d ðc1; c2; c3 ¼
0; 0; 1Þ, respectively. We also show our default setting with
ðc1; c2; c3 ¼ 1=3; 1=3; 1=3Þ. The average node displacement
quantifies the difference among these cases with a lower
displacement corresponding to a higher mental map. In
addition, we compare two sets of parameter settings in the
video to show the flexible control over the degree of mental
map preservation. Our results confirm that in general, the
two extreme cases (i.e., fairly low or high mental maps)
are not the best choices for time-varying graph drawing. We
recommend the default setting with ðc1; c2; c3 ¼ 1=3; 1=3;

1338 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 8, AUGUST 2012

Fig. 6. The same initial graph layout before deformation where node importance is derived by favoring node authority and centrality in (b) and (c),
respectively. Their corresponding triangle meshes are displayed in (a) and (d), respectively. (f) and (g) are the adjusted graph layouts for (b) and (c),
respectively. (e) and (h) are the corresponding triangle meshes of (f) and (g), respectively.

Fig. 7. Top row, left to right: triangle meshes showing the significance of the time-varying graph for five consecutive time steps without blending node
importance over time. Bottom row, left to right: the corresponding triangle meshes with blending. The size of the time windows is 10 in this example.

1=3Þ, but the user can always customize the degree of
mental map preservation for the most effective viewing.

5 DISCUSSION

Our work on time-varying graph visualization is inspired
by Wang et al. [29], [30], [31]. While they solved the FþC

problems for static polygon and volume data, a direct
application of these methods [30], [31] by adding spatio-
temporal coherence terms [29] to time-varying graphs does

not lead to smooth FþC visualization. This is because

unlike video frames, which tend to change more smoothly,

a time-varying graph can experience more abrupt changes

in the location, size, and connectivity of nodes and edges at

consecutive time steps. In addition, because spatially

adjacent nodes in a graph may not always have edges

connecting them, when trying to shrink or expand the

graph to achieve FþC views by pulling the nodes, we need

FENG ET AL.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 1339

Fig. 8. Left to right: four selected time steps of the astronomy tag data set. Top to bottom: the initial graph layouts extracted from the super graph, the
adjusted layout only considering aesthetic balance and temporal coherence, and the final layout after mesh deformation, respectively.

Fig. 9. The graph layouts for one selected time step of the DBLP coauthorship data set. Left: the initial graph layouts extracted from the super graph.
Middle: the adjusted layout only considering aesthetic balance and temporal coherence. Right: the final layout after mesh deformation.

Fig. 10. Left to right: the final layout of four selected time steps of the Enron e-mail data set.

special treatments beyond what is presented in [30], [31] to
achieve satisfactory results.

Our work addresses two major limitations in the original
super graph algorithms [5], [6]. First, while the super graph
algorithms preserve the mental map using the global layout
for a given sequence of graphs, they did so at the cost of
certain aesthetic criteria. Diehl and Görg [5] solved this
problem by compromising aesthetic quality and dynamic
stability, which is very computationally expensive. Another
major limitation is that, when we perform FþC visualiza-
tion on super graphs, the weights of nodes can change over
time as nodes in the focus change in size and location. In
this case, it is very difficult to maintain spatiotemporal
coherence of the graphs.

We combine the super graph with the deformation model
to generate smooth FþC visualization for time-varying
graphs. The advantage of this combination is twofold. First,
for FþC visualization, the super graphs can maintain
spatiotemporal coherence to some extent on several con-
secutive time steps (i.e., a local time window), thus avoiding
nodes to be placed in very distinct locations within the time
window. We maintain high aesthetic quality using spatio-
temporal energy terms in the deformation and solve the
problem of Diehl et al. [6] without incurring high computa-
tion cost to generate the graph layout for every time step. As a
result, interactive FþC visualization of time-varying graphs
becomes possible. The second advantage is that our energy
minimization approach can maintain spatiotemporal coher-
ence for nodes of various weights while our deformation
model achieves stable FþC viewing. In addition, the
transition between the graphs in consecutive local time
windows is delivered smoothly. To the best of our knowl-
edge, using optimization-based methods to generate FþC

visualization of time-varying graphs has not been studied
previously. Our work naturally integrates dynamic graph

drawing and multi-FþC visualization into a single optimiza-
tion framework.

6 CONCLUSIONS AND FUTURE WORK

We have presented a new solution to visualize time-varying
graphs that allows users to generate customized layouts and
animations via simple interaction. We achieve this by
utilizing the ideas of the super graph and graph triangulation
to produce a smooth and coherent visualization with multi-
FþC capability. By transforming the graph layout problem to
a constrained optimization problem for mesh deformation,
we improve the layout directly extracted from the super
graph while highlighting nodes and their surrounding
regions of interest. Through adjusting the importance of
nodes, the users can dynamically change the significance
distribution in the graph and observe the new layout. They
can also specify different nodes in the focus at a certain time
step and rearrange the graph layout effectively via GPU
acceleration. Importance-driven time budget allocation pro-
duces an animation with an emphasis on important time
steps, thus facilitating detailed analysis of the graph.

In this paper, we utilize the definitions of degree centrality
and authority from graph theory to determine node im-
portance. There exist other ways of defining degree centrality
such as betweenness centrality, closeness centrality, and
eigenvector centrality [32]. All these can be utilized and
incorporated into our work to generate desired layout results.
We would like to note that the use of mesh deformation has its
own limitation. Due to the continuity of a mesh, we cannot
change the relative node positions in the initial graph layouts.
In some extreme cases, the initial layouts may not exhibit
spatiotemporal coherence at all and the deformation could
lead to undesired layouts by breaking and flipping node
relationships in the mesh. For a time-varying graph with a
large number of nodes and/or time steps, the optimization

1340 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 8, AUGUST 2012

Fig. 11. Multi-FþC Visualization. (a) The initial graph and its corresponding triangle mesh. (b) The result with a single focus. (c) The result with two foci.

for mesh deformation could take a long time and the results
could be very complex. In the future, we would like to
improve our algorithm by taking a multilevel approach to
prioritize nodes for time-varying graph visualization. This
would reduce the complexity of graph and speed up the
computation, providing a more efficient way to visualize
large time-varying graphs.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments. This work was supported in
part by the National Science Council (contracts NSC-99-
2221-E-006-066-MY3, NSC-100-2628-E-006-031-MY3, NSC-
100-2221-E-006-188-MY3), Taiwan, and was supported in
part by Michigan Technological University startup fund
and the US National Science Foundation (NSF) through
grant IIS-1017935.

REFERENCES

[1] U. Brandes, “Drawing on Physical Analogies,” Drawing Graphs:
Methods and Models, M. Kaufmann and D. Wagner, eds., pp. 71-86,
Springer-Verlag, 2001.

[2] U. Brandes and D. Wagner, “A Bayesian Paradigm for Dynamic
Graph Layout,” Proc. Int’l Symp. Graph Drawing, pp. 236-247, 1997.

[3] J. Branke, “Dynamic Graph Drawing,” Drawing Graphs: Methods
and Models, M. Kaufmann and D. Wagner, eds., pp. 228-246,
Springer-Verlag, 2001.

[4] L. Buatois, G. Caumon, and B. Lévy, “Concurrent Number
Cruncher: A GPU Implementation of a General Sparse Linear
Solver,” Int’l J. Parallel, Emergent and Distributed Systems, vol. 24,
no. 3, pp. 205-223, 2009.

[5] S. Diehl and C. Görg, “Graphs, They Are Changing,” Proc. Int’l
Symp. Graph Drawing, pp. 23-30, 2002.

[6] S. Diehl, C. Görg, and A. Kerren, “Preserving the Mental Map
Using Foresighted Layout,” Proc. Eurographics - IEEE TCVG Symp.
Visualization, pp. 175-184, 2001.

[7] P. Eades, “A Heuristic for Graph Drawing,” Congressus Numer-
antium, vol. 42, pp. 149-160, 1984.

[8] Y. Frishman and A. Tal, “Dynamic Drawing of Clustered Graphs,”
Proc. IEEE Symp. Information Visualization, pp. 191-198, 2004.

[9] Y. Frishman and A. Tal, “Online Dynamic Graph Drawing,” Proc.
Eurographics - IEEE VGTC Symp. Visualization, pp. 75-82, 2007.

[10] T.M.J. Fruchterman and E.M. Reingold, “Graph Drawing by
Force-Directed Placement,” Software—Practice and Experience,
vol. 21, no. 11, pp. 1129-1164, 1991.

[11] G.W. Furnas, “Generalized Fisheye Views,” ACM SIGCHI Bull.,
vol. 17, no. 4, pp. 16-23, 1986.

[12] G.W. Furnas, “A Fisheye Follow-Up: Further Reflections on
Focus+Context,” Proc. ACM SIGCHI Conf. Human Factors in
Computing Systems, pp. 999-1008, 2006.

[13] E. Gansner, Y. Koren, and S. North, “Topological Fisheye Views
for Visualizing Large Graphs,” Proc. IEEE Symp. Information
Visualization, pp. 175-182, 2004.

[14] E.R. Gansner and Y. Hu, “Efficient, Proximity-Preserving Node
Overlap Removal,” J. Graph Algorithms and Applications, vol. 14,
no. 1, pp. 53-74, 2010.

[15] E.R. Gansner, Y. Koren, and S. North, “Graph Drawing by Stress
Majorization,” Proc. Int’l Symp. Graph Drawing, pp. 239-250, 2005.

[16] C. Görg, P. Birke, M. Pohl, and S. Diehl, “Dynamic Graph
Drawing of Sequences of Orthogonal and Hierarchical Graphs,”
Proc. Int’l Symp. Graph Drawing, pp. 228-238, 2005.

[17] D. Harel and Y. Koren, “Graph Drawing by High-Dimensional
Embedding,” Proc. Int’l Symp. Graph Drawing, pp. 299-345,
2002.

[18] T. Kamada and S. Kawai, “An Algorithm for Drawing General
Undirected Graphs,” Information Processing Letters, vol. 31, no. 1,
pp. 7-15, 1989.

[19] G. Kumar and M. Garland, “Visual Exploration of Complex Time-
Varying Graphs,” IEEE Trans. Visualization and Computer Graphics,
vol. 12, no. 5, pp. 805-812, Sept. 2006.

[20] K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout Adjustment
and the Mental Map,” J. Visual Languages and Computing, vol. 6,
no. 2, pp. 183-210, 1995.

[21] A. Noack, “An Energy Model for Visual Graph Clustering,” Proc.
Int’l Symp. Graph Drawing, pp. 425-436, 2004.

[22] S.C. North, “Incremental Layout in DynaDAG,” Proc. Int’l Symp.
Graph Drawing, pp. 409-418, 1996.

[23] H.C. Purchase, E. Hoggan, and C. Görg, “How Important Is the
“Mental Map”? - An Empirical Investigation of a Dynamic Graph
Layout Algorithm,” Proc. Int’l Symp. Graph Drawing, pp. 184-195,
2006.

[24] H.C. Purchase and A. Samra, “Extremes Are Better: Investigating
Mental Map Preservation in Dynamic Graphs,” Proc. Int’l Symp.
Graph Drawing, pp. 60-73, 2008.

[25] M. Sarkar and M.H. Brown, “Graphical Fisheye Views of Graphs,”
Proc. ACM SIGCHI Conf. Human Factors in Computing Systems,
pp. 83-91, 1992.

[26] M. Sarkar, S.S. Snibbe, O.J. Tversky, and S.P. Reiss, “Stretching the
Rubber Sheet: A Metaphor for Viewing Large Layouts on Small
Screens,” Proc. ACM Symp. User Interface Software and Technology,
pp. 81-91, 1993.

[27] J.R. Shewchuk, “Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator,” Proc. ACM Workshop
Applied Computational Geometry, pp. 203-222, 1996.

[28] C. Wang, H. Yu, and K.-L. Ma, “Importance-Driven Time-Varying
Data Visualization,” IEEE Trans. Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1547-1554, Nov./Dec. 2008.

[29] Y.-S. Wang, H. Fu, O. Sorkine, T.-Y. Lee, and H.-P. Seidel,
“Motion-Aware Temporal Coherence for Video Resizing,” ACM
Trans. Graphics, vol. 28, no. 5, p. 127, 2009.

[30] Y.-S. Wang, T.-Y. Lee, and C.-L. Tai, “Focus+Context Visualization
with Distortion Minimization,” IEEE Trans. Visualization and
Computer Graphics, vol. 14, no. 6, pp. 1731-1738, Nov. 2008.

[31] Y.-S. Wang, C. Wang, T.-Y. Lee, and K.-L. Ma, “Feature-Preserving
Volume Data Reduction and Focus+Context Visualization,” IEEE
Trans. Visualization and Computer Graphics, vol. 17, no. 2, pp. 171-
181, Feb. 2011.

[32] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. Cambridge Univ. Press, 1994.

Kun-Chuan Feng received the BS degree in
computer science and information engineering
from National Chung Cheng University, Taiwan,
in 2008, and the MS degree from the Depart-
ment of Computer Science and Information
Engineering, National Cheng Kung University,
Tainan, Taiwan, in 2010. His research interests
include computer graphics, image resizing, and
visualization.

Chaoli Wang received the BE and ME degrees
in computer science from Fuzhou University,
China, in 1998 and 2001, respectively, and the
PhD degree in computer and information
science from The Ohio State University in
2006. He is an assistant professor of computer
science at Michigan Technological University.
His research focuses on large-scale data ana-
lysis and visualization, high-performance com-
puting, and user interfaces and interaction. From

2007 to 2009, he was a postdoctoral researcher at the University of
California, Davis. He is a member of the IEEE.

FENG ET AL.: COHERENT TIME-VARYING GRAPH DRAWING WITH MULTIFOCUS+CONTEXT INTERACTION 1341

Han-Wei Shen received the BS degree from the
Department of Computer Science and Informa-
tion Engineering, National Taiwan University, in
1988, the MS degree in computer science from
the State University of New York at Stony Brook
in 1992, and the PhD degree in computer
science from the University of Utah in 1998.
He is an associate professor at The Ohio State
University. From 1996 to 1999, he was a
research scientist at NASA Ames Research

Center in Mountain View, California. His primary research interests
are scientific visualization and computer graphics. He is a winner of the
US National Science Foundation (NSF) CAREER Award and the US
Department of Energy (DOE) Early Career Principal Investigator Award.
He also won the Outstanding Teaching Award twice in the Department
of Computer Science and Engineering at The Ohio State University.

Tong-Yee Lee received the PhD degree in
computer engineering from Washington State
University, Pullman, in May 1995. He is currently
a distinguished professor in the Department of
Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Tai-
wan, ROC. He leads the Computer Graphics
Group, Visual System Laboratory, National
Cheng Kung University (http://graphics.csie.
ncku.edu.tw/). His current research interests

include computer graphics, nonphotorealistic rendering, medical visua-
lization, virtual reality, and media resizing. He also serves on the editorial
boards of the IEEE Transactions on Information Technology in
Biomedicine, the Visual Computer and the Computers and Graphics
Journal. He served as a member of the international program committees
of several conferences including the IEEE Visualization, the Pacific
Graphics, the IEEE Pacific Visualization Symposium, the IEEE Virtual
Reality, the IEEE-EMBS International Conference on Information
Technology and Applications in Biomedicine, and the International
Conference on Artificial Reality and Telexistence. He is a senior member
of the IEEE and a member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1342 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 8, AUGUST 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

