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Abstract— The need to examine and manipulate large surface models is commonly found in many science, engineering, and medical
applications. On a desktop monitor, however, seeing the whole model in detail is not possible. In this paper, we present a new,
interactive Focus+Context method for visualizing large surface models. Our method, based on an energy optimization model, allows
the user to magnify an area of interest to see it in detail while deforming the rest of the area without perceivable distortion. The rest
of the surface area is essentially shrunk to use as little of the screen space as possible in order to keep the entire model displayed on
screen. We demonstrate the efficacy and robustness of our method with a variety of models.

Index Terms— Focus+Context visualization, magnification, bounding space

✦

1 INTRODUCTION

Using a magnifying lens to enlarge the focal region of an object is
very common in the real world. If the object contains tiny details or
is itself very small, observing the object through a magnifying lens is
usually helpful and perhaps even necessary. Such local magnification
is also useful for the visualization of a high-resolution model on a low-
resolution display device. The user moves the mouse cursor to specify
a region that he/she wants to observe in more detail, and the system
displays an enlarged version of that region in another part of the screen.
However, such a straightforward sub-window technique requires the
user to interpret translation relation between the sub-window and the
main window. Another approach is to zoom in on the region of interest
while cropping off parts of object that are farther away. Such local
magnification visualization, however, cannot maintain a full view of
the model (see Figure 1).

To display complex models on the screen which has limited reso-
lution, researchers have proposed Focus+Context frameworks, which
magnify the area of interest without clipping off the other parts
[2,3,5–8,14]. These methods expand the region of interest through the
theory of optical lens or other distortion methods to achieve this aim.
These methods allow the user to clearly observe the model’s detail in
the region of interest while not losing the overall view of the model’s
shape and topology. This kind of visualization conveys a complete vi-
sual message to the user and reminds the user of the overall perception
of the model at all time, while the user’s attention is focused on a local
region.

We propose a framework to interactively deform a polyhedral
model to achieve Focus+Context visualization. Our goal is to non-
homogeneously rescale different regions while preventing the global
bounding space of the model from being expanded (see Figure 2) and
thus keeping the entire model displayed on the screen. We construct
a uniform grid space for a given model such that the model vertices
are embedded in the grid cubes. While enlarging the cubes covering
the user-specified focal region, our system automatically reduces the
other cubes to keep the entire model within the global bounding space.
The deformed model is reconstructed by computing each model ver-
tex as a linear combination of its respective set of cube vertices in the
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deformed grid space.

Since our goal is to constrain the model to be within a bounding
space, when the focal region is expanded, some regions must be re-
duced. We wish to scale each local region of the model but keep it
similar to its original appearance. That is, we aim to preserve the as-
pect ratio of each local region, avoiding squeezing or squashing which
would result in distortion. Specifically, we design an optimization
procedure that allows cubes covering the model to undergo uniform
scales, while letting empty cubes to be stretched to absorb the result-
ing distortion. Since the transformations of connected cubes are not
identical, the deformation inevitably causes distortion. To minimize
this resulting distortion, we propose a set of energy terms to form an
optimization system and solve for the grid vertex positions of the de-
formed space in a least-squares sense.

Previous Work

Many related algorithms have been developed to visualize complicated
information of 3D volumetric models. The outer opaque layer always
overlays the internal information and results in visualization problems.
Hence, Viola et al. [13] automatically compute the importance of each
voxel to avoid hiding the important regions by the outer trivial voxels.
Zhou et al. [15] advocate a feature-based method to enhance the vol-
umetric features and render the parts of the model inside and outside
the focal region in different styles. McGuffin et al. [11] applied defor-
mation techniques to browse volumetric data. Their approach opens
up, spreads apart, or peels away the outer layers to reveal the hidden
structures.

To visualize tiny information, such as the bump surface of a hu-
man colon, in a clear and detailed view, researchers have proposed
many methods to magnify the focal area and either distort or overlay
the neighboring regions to highlight the region of interest. Keahey et
al. [5–7] deformed the texts or 2D images by a transformation grid,
determined by nonlinear magnification fields. Bier et al. [1] presented
an intuitive interface for the user to specify the focal region and render
the information inside the focal region with a different style to en-
hance the feature of interest. Carpendale et al. [2, 3] proposed several
distortion patterns, such as stretch orthogonal and nonlinear radial, to
demand more space for the focal region to achieve 3D distortion that
is independent of the viewpoint. LaMar et al. [8] applied hardware
acceleration to deform the rendered 2D images or 3D volumes. They
accomplished the goal by dynamically computing the texture coordi-
nates for the grid vertices of the applied mask and rendering the texture
with the coordinates that are projected onto the homogeneous space
to make the results desirable. Unlike the above-mentioned methods,
Wang et al. [14] proposed an interactive technique to render volumet-
ric models according to optical-lens theory. Their method simulates
the ray direction that is determined by the position of the focal point
and displays the expanded image within the magnifying lens. Both [8]
and [14] provide different shapes of bounded lens for the user to mag-
nify the regions of interest.
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Fig. 1. (left) Original view of the thorax model. For a detailed observation
of the cervical vertebra, an intuitive approach is to shorten the distance
between the model and the camera. However, the other regions, such
as the lower part of the spine, will be clipped off due to the limited screen
space (middle). In contrast, our method magnifies the focal region while
keeping the entire model displayed on the same screen (right).

Contribution

Some previous techniques are similar to our work in that they deform
a grid space to magnify the region of interest. However, none of them
has addressed the issue of stretching and distorting the remaining parts
of the model while magnifying a specific region. While expanding the
focal region, these methods simply let the distortion occur in the sur-
rounding area and ignore the artifact. In contrast, our method lets
the free space absorb the resulting distortion rather than letting the
distortion uniformly spread throughout the nearby spaces (see Figure
3). We resize each local region of the given model by an approxi-
mate uniform scale such that the locally magnified model resembles
the original shape, except that their local sizes are different. Further-
more, our method accomplishes Focus+Context visualization with the
regions close to the focal region automatically expanded to reduce the
distortion. This is a desirable property since these surrounding areas
are likely to be the next focal region during interactive visualization
and thus are important as well. Overall, our algorithm can visualize
Focus+Context information on the screen while keeping the distortion
under control and making it unnoticeable.

2 FOCUS+CONTEXT VISUALIZATION

Given an input model, we first rescale the model to be of unit size. To
ensure that the entire model remains displayed on the screen, the given
model should be placed at a proper position such that the eight vertices
of its 1×1×1 bounding box are all projected within the screen. Then,
we partition the model using a n3 uniform grid space, G = {V,E,C},
with vertices V, edges E, and cubes C, where V = [vT

0 ,vT
1 , ...vT

m−1]
T ,

m = (n + 1)3, and vi ∈ ℜ3 denotes the position of vertex i. In other

words, there are n3 identical cubes inside the bounding space.

Using our 2D graphical interface, the user moves a magnifying lens
represented by a red dotted circle to specify a focal region to magnify.
The user also specifies a parameter λ as the magnification factor of the
focal region. We refer to the cubes covering the focal region (i.e., those
whose centroids are projected within the red dotted circle) as the focal
cubes. The focal cubes are expanded according to the parameter λ , and
the remaining cubes are automatically expanded or reduced to obtain
a deformed grid space G′ while maintaining the global bounding size.
Our system solves for the grid vertex positions by minimizing a set of
energy functions retaining the aspect ratios of the cubes covering the
given model as well as constraining the grid vertices to be within the
bounding space. After deforming the embedding space, the model is
reconstructed by computing each vertex position according to its mean
value coordinates within the grid space [4]. Since the global bounding
space remains unchanged during the magnification of the focal region
(see Figure 4), and the distance between the model and the camera also
remains the same, our system accomplishes the aim of Focus+Context
visualization.

2.1 Space Deformation

We compute the deformed grid space by determining the scaling trans-
formation of each cube. Clearly, since the cubes are connected and are
not scaled by the same factor, it is impossible to magnify a specific
region without causing distortion to other regions. Therefore we strive
to minimize the deviation of each local transformation from a uniform
scale to keep the resulting distortion under control and unnoticeable.
To satisfy the above requirements, we propose several energy func-
tions and formulate an optimization system to compute the deformed
grid space.

2.1.1 Individual Cube Rescaling

Given a cube ck, we compute its deformed version c′k = skck, where sk
is a 3×3 uniform scaling matrix. To solve for the entire grid space in

Fig. 2. (left) The original model partitioned with a uniform grid space. Since solving for those deformed cubes that do not contain any model
information (in green) provides zero contribution to the magnification result, we omit their energy terms from our optimization system (middle).
That is, we solve only for the deformed grid vertices of the cubes occupied by the model (in red) and reconstruct the embedded model by space
interpolation to achieve magnification visualization (right).
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Fig. 3. (left) Original model. The focal region (inside the red dotted circle) is magnified to observe in detail the teeth model using the stretch
orthogonal method [2, 3] (middle left), radial Gaussian distortion [2, 3] with faster (middle) and slower (middle right) fall-off and our method (right).
Note that, with the stretch orthogonal method and the radial Gaussian, the surroundings of the focal region are seriously stretched due to the
distortion being uniformly distributed on the model; wider Gaussian fall-off only distributes the distortion to a larger region. In contrast, our method
minimizes distortion and preserves the shape of the local feature such that each tooth remains similar to its original shape.

a least-squares sense, we integrate the equations into a linear system

‖C′ −SC‖2 = 0, where

Suv =
{

sk i f u = v
0 otherwise , and C = [c0,c1, ...,cn3−1]

T . (1)

Rather than uniformly spreading the distortion over the grid space, we
float distortion to the cubes that are not occupied by the model because
the distortion of those cubes does not influence the magnification re-
sult. Thus, we classify the cubes into two groups: the principle cubes
which cover the input model CP ⊂ C and the trivial cubes CT ⊂ C
which do not. Our goal is to prevent the principle cubes from being
squeezed. While solving for the deformed grid space by minimizing
the objective function, our algorithm gives higher penalties to the prin-
ciple cubes CP if their transformations deviate from uniform scales so
as to better preserve their aspect ratios. The trivial cubes CT have zero
penalties, sacrificing the uniformity of scaling transformation to ab-
sorb the distortion. To implement this idea, we rewrite Equation 1 into
the form:

‖C′P−SPCP‖2 + γ‖C′T −ST CT ‖2 = 0. (2)

By setting γ = 0 since the distortion on the trivial cubes CT does not
influence the model’s shape, our system computes only the principle
cubes CP by solving the following simplified equation:

‖C′P−SPCP‖2 = 0. (3)

Note that a cube is formed by a set of vertices and edges. That is,
if a cube is uniformly resized, then its 12 edges would be uniformly
expanded or contracted. While deforming the grid space, our algo-
rithm retains the connectivity of the original grid structure and only
moves the grid vertices to scale individual cubes to different sizes. Let

ep = {i, j} be the pth edge of the cube ck and εp = vi− v j, we can

represent the cube as cT
k = qkV, where

qk,uv =

⎧⎨
⎩

1 i f u = p, v = i
−1 i f u = p, v = j
0 otherwise

, ck = [εT
0 ,εT

1 , ...,εT
11].

Putting the equations together, we can denote Q = [qT
0 ,qT

1 , ...,qT
n3−1

]T

and replace the matrix C by QV. Thus, Equation 3 can be reformulated
as

‖QPV′P−SPQPVP‖2 = 0. (4)

where VP denotes the vertices of the principle cubes.

2.1.2 Position Constraint
To solve Equation 4, we need at least one absolute position to locate
the deformed grid space since the equation only expresses relations
among vertex positions. However, constraining only one vertex at a
specific position may move the model when the focal region is magni-
fied. This is because the optimization may transform individual cubes

to different positions to reduce their distortion. Figure 5 demonstrates
this effect. To enhance the stability of the visualization, we want all the
cubes to be close to their original positions. Specifically, we constrain
each grid vertex to be at its original position with a small weighting
factor and introduce the following energy term:

ω‖IV′P−VP‖2 = 0. (5)

We set ω = 0.001 in our experiments to retain the overall model’s
position. Larger ω will lead to immovable grid vertices and failure to
deform the grid space.

2.1.3 Non-Linear Constrained Optimization
We solve for the deformed vertex positions by minimizing the integra-
tion of the above energy terms

arg min
V′P,SP

‖QPV′P−SPQPVP‖2 +ω‖IV′P−VP‖2, (6)

which can be formulated as an over-determined linear system AV′P =
b(VP), where A = [QT

P ,ωIT ]T and b(VP) = [ST
P QT

P VT
P ,VT

P ]T . To pre-
vent the global bounding space from expanding, we add inequality
constraints to the objective function such that the grid vertices move
only within the bounding space. That is, we minimize

argmin
V′P

‖AV′P−b(VP)‖2, subject to

xl ≤ vx ≤ xu, yl ≤ vy ≤ yu, and zl ≤ vz ≤ zu, (7)

where xl , xu, yl , yu, zl , and zu are the lower and upper bounds of
x, y, and z coordinate, respectively. Since A is not a positive def-
inite matrix, we multiply the equation by AT and solve the system
(AT A)V′P = AT b(VP) to obtain the unknown variables V′P. Note that
the uniform scaling transformations of the cubes are still unknown
when we determine the deformed grid space. Therefore, we can only
solve this non-linear optimization problem by iteratively updating the
vertex positions [9].

The scaling factor for the focal cubes is obtained from the input
parameter λ . For the remaining (non-focal principle) cubes, we com-
pute their scaling transformations according to their deformed (M′

k)

and original (Mk) volumes. Specifically, sk = (M′
k/Mk)1/3I. In the be-

ginning, we set V0
P = VP to start the iteration. We then compute the

scaling transformations for the non-focal cubes from Vt
P, and use the

obtained b(Vt
P) to solve for the new vertex positions Vt+1

P . Although

the scaling transformation obtained from V0
P is merely an identity ma-

trix, the least-squares solver will still reduce the volumes of some
cubes so as to expand the focal region. However, the set of vertex
positions computed in the first iteration is not the optimum solution
of our proposed objective function because the applied scales are only
determined by the initial guess. Therefore, we repeat the process to
update the vertex positions until the solution converges.

While iteratively updating the grid vertex positions, we detect
whether any vertex violates the inequality constraints. Since only a
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Fig. 4. (left) Original model and its global bounding space. While magnifying the gargoyle’s head without imposing inequality constraints, the entire
model is uniformly expanded and some regions may go out of the bounding space (middle). We constrain the outer grid vertices to be located on
the bounding surface (right), and thus ensure that the deformed model is always displayed on screen in its entirety.

Fig. 5. (top row) Only one position constraint is applied at the bottom
right of the Ramesses model (black point). While magnifying his feet
(top middle) and head (top right), his body would move to the right or
left as our algorithm tries to minimize distortion. (bottom row) All the grid
vertices are slightly constrained to their original positions. The model’s
position is now more stable after local magnification.

few vertices might be transformed outside the bounding space, not all
the inequality constraints have influence on the optimization problem.
Therefore, we consider an inequality constraint fx(v) as

active i f vx > xu or vx < xl
inactive i f xl ≤ vx ≤ xu

.

Similarly, fy(v) and fz(v) are inactive if vy and vz satisfy their re-
spective constraints. In the beginning, we consider all the inequality
constraints as inactive since all the grid vertices are located within
the bounding space. After computing the new vertex positions in
each iteration, our algorithm detects if any inequality constraint has
become active, and if so, restricts that vertex to be sliding on the
space boundary in the next iteration. To combine the inequality con-
straints with our proposed objective function, these constraints are
transformed into energy terms [10] (for example, (vx − xl)2 = 0 if
vx < xl) and are added into the linear system if they are active. Note
that the active constraints of x, y, and z coordinates are different; there-
fore, the three coordinates of the grid vertices should be solved sepa-
rately. Let Fx = { fx,0, fx,1, fx,2, ...} be the index set of active inequal-
ity constraints of the x coordinate. We can solve the linear system
AxV′P,x = bx(VP) to obtain the x coordinates of the grid vertices, where

Ax = [QT
P ,ωIT ,RT

x ]T , bx(VP) = [ST
P QT

P VT
P,x,V

T
P,x,Hx]T ,

Rx,uv =
{

δ i f v = fx,u ∈ Fx
0 otherwise , Hx =

{
δxl i f vx < xl
δxu i f vx > xu

,

and δ is a large number to enforce the soft constraint (we set δ = 100
in our experiments). The other two coordinates of the vertices can
be determined in the same manner. Since the number of equations
changes whenever any inequality constraint becomes active, causing
the size and the structure of the linear system to change as well, our
system needs to re-factorize the matrix Ax (or Ay , Az) to compute the
new vertex set. Fortunately, the factorization only takes place when
an inequality constraint is activated or deactivated, which occurs very
infrequently because only the boundary vertices of the principle cubes
might violate the inequality constraints. Although our algorithm de-
forms the grid space in an iterative manner, the computation is still
efficient because the factorization of the linear system is not necessary
in every step. In most steps, we need only to apply back substitutions
to compute the new vertex set and thus the grid space can be deformed
in real time.

For grid vertices whose inequality constraints are active, we ex-
amine their positions to decide when to deactivate them. Since our
system solves for the deformed grid space using soft constraints, the
vertices with active inequality constraints are not exactly located on
the grid space boundary, rather they may be slightly inside or outside
the boundary. Specifically, the activated inequality constraint of an
outside vertex pulls the vertex close to the space boundary, but the ver-
tex remains outside. Then, subsequent movement of the focal region
may cause the vertex to move in. When this happens, its inequality
constraint can be deactivated.

2.1.4 Initial Guess

Solving a nonlinear optimization problem always needs a starting posi-
tion, which is commonly called the initial guess. Obviously, an initial
guess that is close to the optimum solution would lead to faster conver-
gence. Choosing a good starting point is therefore an important issue.
Although it is always possible to start deforming the grid space from
its uniform shape, the extra iterations needed will increase the compu-
tation cost and thus slow down the interactive rate. Figure 6 shows an
example to demonstrate the initial guess and the subsequent iterations.
Here, we assume that the cursor movement of the user while specify-
ing the focal region is continuous and the algorithm starts the iteration
from the previous frame because the magnification results should be
similar if their magnified regions are close to each other. In the be-
ginning, we set the original grid space as the initial guess since there
is no previous frame. Our system repeats the updating process until
the movement of each grid vertex is less than 0.001, which takes 8
iterations on average to achieve the minimum solution.
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Model Model Grid Factorization Back substitution Reconstruction
Vertex Number Vertex Number (sec.) (sec.) (sec.)

bonefoot 12612 605 0.032 0.001 0.002
ball joint 137062 343 0.021 0.001 0.023
Goddess 523578 565 0.106 0.001 0.087
thorax 99920 973 0.126 0.001 0.016
skull 63264 2714 0.145 0.001 0.011

Ramesses 826266 920 0.151 0.001 0.144
colon 44500 1351 0.101 0.001 0.008
hip 132538 1470 0.176 0.001 0.024

gargoyle 100002 1644 0.134 0.001 0.018
teeth 116604 1851 0.175 0.001 0.020

dancing children 100000 1697 0.131 0.001 0.018
Chinese dragon 437645 1480 0.177 0.001 0.076

Table 1. The second and third columns show the model information and the last three columns show the timing statistic. The computation cost
of reconstructing the model depends on the model’s vertex number while the computation cost of grid space deformation (i.e., factorization and
back-substitution) depends on the grid’s vertex number.

Fig. 6. We magnify the dragon’s head (in the red dotted circle) to achieve Focus+Context visualization. From left to right are the original model
and the locally magnified models computed by our algorithm after 1, 5, 10, 30 iterations. Notice that the surrounding region of the dragon’s head is
more distorted in the beginning but the distortion is rapidly reduced in subsequent iterations. The results obtained in 10 and 30 iterations are very
similar because the iterative solver has converged.

2.2 Model Reconstruction
We reconstruct the given model by space interpolation after the grid
space is deformed. Since each model vertex is embedded in a local
cube, we can determine its new position by a combination of their
respective 8 cube vertices. Let u be a vertex of the given model, and
v0 ∼ v7 be its surrounding cube vertices. The model vertex u can be

represented as ∑7
i=0 wivi, where wi is the weight determined by the

mean value coordinates [4]. We compute the weighting factor wi in
the pre-computation step and use these values to reconstruct the model
each time the bounding space is deformed since the wi’s remain the
same.

3 RESULTS AND DISCUSSION

We have implemented our algorithm on an Intel Core2 2.33 GHz PC
with 2 Gb RAM. The linear system is solved with Cholesky Factor-
ization provided by the Taucs library [12]. We partition each input
model by a 203 grid space, except the ball joint model (Figure 2) by
103. Clearly, partitioning the model with a finer grid space (especially
for complex models) will lead to better results but increase the com-
putation cost. To balance between the quality and interactive rate, we
found that a 203 grid space is a good compromise. Table 1 shows the
timing statistic and the model information. The slowest part of our al-
gorithm is the matrix factorization, which mainly depends on the num-
ber of grid cubes. The reconstruction of the given model is efficient
because computing each vertex only requires a linear combination of
the surrounding cube vertices. For example, the Ramesses model in
Figure 5 contains 826,266 vertices, which requires only 0.144 seconds
to determine the positions of all the model vertices.

Our system can provide Focus+Context information to the user,
allowing the user to view detailed content of the focal region while
maintaining the overall perception of the model. The results shown
in Figure 9 demonstrate the effectiveness of our technique. For each
input model, we expand different focal regions specified with a dotted

red circle and the model is deformed smoothly to keep the deformed
shape within the global bounding box. In addition, due to the distor-
tion minimization in our formulation, our system not only retains the
aspect ratios of non-focal regions but also results in the smooth mag-
nification of the surroundings of the focal region. This means the user
needs not carefully specifies the shape and size of the magnifying lens
to fit the feature of interest, leading to an easy and intuitive interface.

3.1 Distortion Measurement
We determine the degree of similarity between the original and de-
formed models by considering the distortion of each local region. The
distortion can be measured in terms of the amount of stretching of
individual cubes because the embedded input model is deformed by
space interpolation. Obviously, a deformed cube that is of the same
shape, but different size, as the original cube suffers from zero distor-
tion. Therefore, to determine the amount of distortion, we first scale
each pair of original and deformed cubes to the same size and then
accumulate the difference of their 12 edge vectors. Specifically, we
compute the equation

∑
{i, j}∈Ek

|δ (vi−v j)− (v′i−v′j)|2, (8)

where Ek denotes the 12 edges of the local cube k, and δ =
(M′

k/Mk)1/3, with M′
k and Mk denoting the volume of its original and

deformed cubes, respectively. The region with lower distortion value
means that it is similar to its original shape and the region with higher
distortion value is naturally stretched. For example, in Figure 7, we
expand a portion of the colon and measure the resulting distortion due
to the magnification. It can be clearly observed that, without distor-
tion minimization, the regions surrounding the focal region are se-
riously distorted. In comparison, our system produces results with
much smaller and unnoticeable distortion. In the case when all the
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Fig. 7. (left) Original model. (middle) Deformed models by radial Gaussian distortion (top) [2, 3] and by our method (bottom). We use different
shades of red to represent the distortion distribution (right). Notice that the distortion is much smaller with our method and does not gather around
the focal region.

cubes are principle cubes, our system produces results similar to those
with radial Gaussian distortion [2, 3] since there is no space to absorb
distortion. Under this situation, the distortion is uniformly propagated
outward from the focal region to other regions.

3.2 Soft Constraint

An interesting feature of our system is the use of soft constraints to
solve for the deformed grid space in a least-squares sense. This leads
to the actual size of the deformed focal region being slightly smaller
than the user-specified magnifying factor for the focal region. We
take the gargoyle model in Figure 4 as an example to illustrate this
situation. Although we apply a 2× I transformation on the focal re-
gion to determine the deformed grid space, the average volume of the
deformed focal region is 1.46× 10−4 while their original volume is
0.26×10−4. The expanding ratio, i.e., 6.35, is less than the expected
23 because the uniformity and the magnification requirements conflict
with each other (i.e., within the limited space, it is impossible for the
focal region to expand with no distortion), and the least-squares solver
finds the optimum solution to satisfy the overall requirements.

Solving for the deformed grid space using soft constraints inevitable
causes a little distortion to the focal region because the system com-
promises the uniformity of the focal cubes to reduce the distortion of
the overall model. Some applications may require the focal region
to be expanded without distortion. Minimizing the objective function
with hard constraints can achieve this aim and ensure that the size of

the deformed focal cube is equal to the user’s specification. Unfortu-
nately, this approach would rapidly increase the cost if the focal region
changes constantly since the modification of the hard constraints (i.e.,
focal region) changes the structure of the linear system and thus re-
quires matrix refactorization. For efficiency, we solve the objective
function with only soft constraints while the user is changing the fo-
cal region interactively and change the soft constraints into hard con-
straints to exactly retain the size and uniformity of the focal cubes after
the user’s specification remains fixed for some time.

3.3 Pros and Cons

Our system deforms the entire model to achieve Focus+Context visu-
alization. While magnifying the focal region to display it with higher
resolution, some regions are expanded while some are reduced to min-
imize distortion of every local region. Unlike the radial Gaussian dis-
tortion method [2, 3], which deforms only the cubes inside or close
to the focal region, our system rescales almost all the cubes covering
the model. Although the deformation is everywhere, the user can eas-
ily observe the continuous variation of the model’s shape because the
model is deformed interactively. Since every local region is rescaled,
our method can not retain the model’s global shape while minimizing
the local distortion. For example, in Figure 8, the global shape of the
foot bone model is changed with our approach but is better preserved
by the radial Gaussian distortion. We argue that the change of the
global shape is not necessarily a bad feature. According to the the-
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Fig. 8. Original model (left). Observe that the Gaussian distortion method (middle) better preserves the global shape of the foot bone than our
method (right). However, the user usually pays more attention to the regions inside and surrounding the magnifying lens and our method produces
very little artifact in these regions.

ory of human central vision, only a small area in the center of retina
contains a rich collection of cone cells, which is sensitive to light, fine
detail and color. Therefore, users usually concentrate on a region of in-
terest and its surroundings when using a magnifying lens. This means
that the model’s overall shape is only a concept and the variation of
the global shape is not disturbing to the user. In addition, since our
system achieves real time performance, the user can easily move the
magnifying lens to any free space not occupied by the model any time
to see the model’s undeformed global shape.

Our system offers another advantage for Focus+Context visualiza-
tion. The magnifying lens is of limited size (i.e., smaller than the
screen size), and during interactive visualization, the user is often also
interested in the non-focal regions close to the lens border. Thanks
to the distortion minimization, these surrounding regions, which are
likely to be the next focal regions, are also enforced to expand because
the cubes are connected.

4 CONCLUSIONS

We introduce a novel and interactive technique to achieve Fo-
cus+Context visualization of 3D models. The main contribution of
our method is to minimize the resulting distortion so that each local
region appears similar to its original counterpart. Our algorithm re-
tains the original global size of the model by constraining the grid ver-
tices to move within the global bounding space and prevents the local
regions from squeezing through approximating the applied transfor-
mations to be close to uniform scales. Although solving this nonlinear
constrained optimization problem takes several iterations to obtain the
optimum solution, the computation is still efficient because updating
the positions of grid vertices requires only back substitutions in most
of the iterative steps. In addition, our algorithm has the potential to
handle point models and volumetric data since the embedded model is
deformed by space interpolation. While the cubes are transformed to
satisfy the local magnification requirement, the positions of the point
clouds or the voxels are recomputed as the combination of its sur-
rounding cube vertices.
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Fig. 9. Original models (leftmost column). Our algorithm expands the focal region and reconstructs the embedded model from the deformed grid
space to achieve Focus+Context visualization (the remaining columns).
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