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(a) Content (c) Expressionism (d) Rococo (e) Impressionism

(k) Post-Impressionism(g) Abstract (h) Romanticism (i) Ukiyo-e (j) Ink and wash

(f) Sketch

(l) Art Brut

(b) Neo-Impressionism

Figure 1: Style transfer results using our method, which can robustly and effectively handle various painting styles. The input
content image is in the top-left corner and the style reference is shown as the inset for each result. Our method can faithfully
capture the style of each painting and generate a result with a unique artistic visual appearance. Style image credits: {(b) Henri
Edmond Cross, (c) Vasily Kandinsky, (d) Michele Marieschi, (e) Claude Monet, (h) Richard Parkes Bonington, (i) Utagawa
Hiroshige, (k) Paul Cezanne}/The Art Institute of Chicago (CC0), (f) Vincent van Gogh/National Gallery of Art (CC0).

ABSTRACT
In this work, we tackle the challenging problem of arbitrary image
style transfer using a novel style feature representation learning
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method. A suitable style representation, as a key component in
image stylization tasks, is essential to achieve satisfactory results.
Existing deep neural network based approaches achieve reasonable
results with the guidance from second-order statistics such as
Gram matrix of content features. However, they do not leverage
sufficient style information, which results in artifacts such as local
distortions and style inconsistency. To address these issues, we
propose to learn style representation directly from image features
instead of their second-order statistics, by analyzing the similarities
and differences between multiple styles and considering the style
distribution. Specifically, we present Contrastive Arbitrary Style
Transfer (CAST), which is a new style representation learning and
style transfer method via contrastive learning. Our framework
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consists of three key components, i.e., a multi-layer style projec-
tor for style code encoding, a domain enhancement module for
effective learning of style distribution, and a generative network
for image style transfer. We conduct qualitative and quantitative
evaluations comprehensively to demonstrate that our approach
achieves significantly better results compared to those obtained
via state-of-the-art methods. Code and models are available at
https://github.com/zyxElsa/CAST_pytorch.
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1 INTRODUCTION
If a picture is worth a thousand words, then an artwork tells the
whole story. Art styles, which describe the way the artwork looks,
are the manner in which the artist portrays his or her subject matter
and how the artist expresses his or her vision. Style is determined
by the characteristics that describe the artwork, such as the way the
artist employs form, color, and composition. Artistic style transfer,
as an efficient way to create a new painting by combining the
content of a natural images and the style of an existing painting
image, is a major research topic in computer graphics and computer
vision [Jing et al. 2020b; Liao et al. 2017], with style representation
as the most important issue.

Since Gatys et al. [2016] proposed to use Gram matrix as artistic
style representation, high-quality visual results are generated by
advanced neural style transfer networks. Despite the remarkable
progress made in the field of arbitrary image style transfer, the
second-order feature statistics (Gram matrix or mean/variance)
style representation has restricted the further development and
application. As shown in Figure 1, the appearances of different
artwork styles vary considerably in terms of not only the colors
and local textures but also the layouts and compositions. Figures 2d
and 2e show the results of two recently proposed state-of-the-art
style transfer approaches.We obverse that aligning the distributions
of neural activation between images using second-order statistics
results in difficulty to capture the color distribution or the special
layouts, or imitate specific detailed brush effects of different styles.

In this paper, we revisit the core problem for neural style transfer,
that is, the proper artistic style representation. The widely used
second-order statistics as a global style descriptor can distinguish
styles to some extent, but they are not the optimal way to represent
styles. By second-order statistics, arbitrary stylization formulates
styles through artificially designed image features and loss func-
tions in a heuristic manner. In other words, the network learns

(a) Content (b) Style (c) Ours (d) AdaAttN (e) IEST

Figure 2: Compared with AdaAttnN [Liu et al. 2021b] and
IEST [Chen et al. 2021a] which rely on second-order sta-
tistics, our method can faithfully transfer styles while en-
suring structural consistency with the content images. Style
image (1st row) credit: Claude Monet/AIC (CC0).

to fit the second-order statistics of the style image and generated
image, instead of the style itself. Exploring the relationship and
distribution of styles directly from artistic images instead of using
pre-defined style representations is worthwhile.

Toward this end, we propose to improve arbitrary style transfer
with a novel style representation by contrastive learning-based
optimization. Our key insight is that a person without artistic
knowledge has difficulty defining the style if only one artistic
image is given, but identifying the difference between different
styles is relatively easy. Specifically, we present a novel Contrastive
Arbitrary Style Transfer (CAST) framework for image style repre-
sentation and style transfer. CAST consists of a backbone based on
an encoder-transformation-decoder structure, a multi-layer style
projector (MSP) module, and a domain enhancement (DE) module.
We introduce contrastive learning to consider the positive and
negative relationships between styles, and we use DE to learn the
distribution of overall art image domains. To capture the style
features at various scales, our MSP module projects the features of
each layer of the style image to the corresponding style encoding
space. Our contribution can be summarized as follows:
• We propose an MSP module for style encoding and a novel
CASTmodel for encoder-transformation-decoder-based arbitrary
style transfer without using the second-order statistics as style
representations.

• We introduce contrastive learning and domain enhancement
by considering the relationships between positive and negative
examples as well as the global distribution of styles, which solves
the problem that existing style transfer models cannot fully utilize
a large amount of style information.

• Experiments show that our method achieves state-of-the-art style
transfer results in terms of visual quality. A challenging subjective
survey was conducted, as inspired by the Turing test, to show
that output of CAST could mislead participants from telling the
fake painting images from real ones.

2 RELATEDWORK
Image style transfer. Traditional style transfer methods such as

stroke-based rendering [Fišer et al. 2016] and image filtering [Wang
et al. 2004] typically use low-level hand-crafted features. Gatys
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Figure 3: CAST consists of an encoder-transformation-decoder-based generatorG, a multi-layer style projector (MSP) module,
and a domain enhancementmodule.We first generate images Ics and Isc from the content image Ic and the style image Is using
the generator. Then, Ics and Is are fed into the MSP module to generate the corresponding style code z̃ and ẑ, which will be
used as positive samples in the style contrastive learning process. The style codes z− of other artistic images in the style bank
will be used as negative samples. We compute a contrastive style loss LG

contra based on these style codes. DE module is based
on the adversarial loss Ladv and the cycle consistency loss Lcyc . Style image credit: Giovanni Battista Piranesi/AIC (CC0).

et al. [2016] and the follow-up variants [Gatys et al. 2017; Kolkin
et al. 2019] demonstrate that the statistical distribution of features
extracted from pre-trained deep convolutional neural networks
can capture style patterns effectively. Although the results are
remarkable, these methods formulate the task as a complex op-
timization problem, which leads to high computational cost. Some
recent approaches rely on a learnable neural network to match the
statistical information in feature space for efficiency. Per-style-per-
model methods [Gao et al. 2020; Johnson et al. 2016; Puy and Pérez
2019] train a specific network for each individual style. Multiple-
style-per-model methods [Chen et al. 2017; Dumoulin et al. 2017;
Ulyanov et al. 2016; Zhang and Dana 2018] represent multiple styles
using one single model.

Arbitrary style transfer methods [Deng et al. 2022, 2020; Li et al.
2017; Svoboda et al. 2020; Wu et al. 2021a] build more flexible
feed-forward architectures to handle an arbitrary style using a
unified model. AdaIN [Huang and Belongie 2017] and DIN [Jing
et al. 2020a] directly align the overall statistics of content features
with the statistics of style features and adopt conditional instance
normalization. However, dynamic generation of affine parameters
in the instance normalization layer may cause distortion artifacts.
Instead, several methods follow the encoder-decodermanner, where
feature transformation and/or fusion is introduced into an auto-
encoder-based framework. For example, Li et al. [2019] learn a cross-
domain feature linear transformation matrix (LST) to enable uni-
versal style transfer and generate the desired stylization results by
decoding from the transformed features. Park et al. [2019] introduce
SANet to flexibly match the semantically nearest style features onto
the content features. Deng et al. [2021] propose MCCNet to fuse
exemplar style features and input content features by multi-channel
correlation for efficient style transfer. An et al. [2021] propose
reversible neural flows and an unbiased feature transfer module
(ArtFlow) to prevent content leak during universal style transfer. Liu
et al. [2021b] present an adaptive attention normalization module
(AdaAttN) to consider both shallow and deep features for attention

score calculation. GAN-based methods [Kotovenko et al. 2019a,b;
Sanakoyeu et al. 2018a; Svoboda et al. 2020; Zhu et al. 2017] have
been successfully used in collection style transfer, which considers
style images in a collection as a domain [Chen et al. 2021b; Lin et al.
2021; Xu et al. 2021].

Contrastive learning. Contrastive learning has been used in many
applications, such as image dehazing [Wu et al. 2021b], context pre-
diction [Santa Cruz et al. 2019], geometric prediction [Liu et al. 2019]
and image translation. Contrastive learning is introduced in image
translation to preserve the content of the input [Han et al. 2021] and
reducemode collapse [Jeong and Shin 2021; Kang and Park 2020; Liu
et al. 2021a]. CUT [Park et al. 2020] proposes patch-wise contrastive
learning by cropping input and output images into patches and
maximizing the mutual information between patches. Following
CUT, TUNIT [Baek et al. 2021] adopts contrastive learning on
images with similar semantic structures. However, the semantic
similarity assumption does not hold for arbitrary style transfer
tasks, which leads the learned style representations to a significant
performance drop. IEST [Chen et al. 2021a] applies contrastive
learning to image style transfer based on feature statistics (mean and
standard deviation) as style priors. The contrastive loss is calculated
only within the generated results. Contrastive learning in IEST is
an auxiliary method to associate stylized images sharing the same
style, and the ability comes from the feature statistics from pre-
trained VGG. Differently, we introduce contrastive learning for
style representation by proposing a novel framework that uses
visual features comprehensively to represent style for the task of
arbitrary image style transfer.

3 METHOD
As shown in Figure 3, our framework consists of three key compo-
nents: (1) a multi-layer style projector which is trained to project
features of artistic image into style code; (2) a contrastive style
learning module which is applied to guide both the training of the
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multi-layer style projector and the style image generation; and (3) a
domain enhancement scheme to further help learn the distribution
of artistic image domain. All these components are used for learning
style representations to measure the difference between the input
artistic images and generated results and thus, they could be applied
to different kinds of arbitrary style transfer networks.

3.1 Multi-layer Style Projector
Our goal is to develop an arbitrary style transfer framework that
can capture and transfer the local stroke characteristics and overall
appearance of an artistic image to a natural image. A key component
is to find a suitable style representation which can be used to
distinguish different styles and further guide the generation of style
images. To this end, we design an MSP module, which includes a
style feature extractor and a multi-layer projector. Instead of using
features from a specific layer or a fusion of multiple layers, our
MSP projects features of different layers into separate latent style
spaces to encode local and global style cues.

Specifically, we adapt VGG-19 [Simonyan and Zisserman 2014]
and finetune the VGG-19 model pre-trained on ImageNet with
a collection of 18,000 artistic images in 30 categories. We then
select M layers of feature maps in VGG-19 as input to our multi-
layer projector (we use layers of ReLU1_2, ReLU2_2, ReLU3_3, and
ReLU4_3 in all experiments). We use max pooling and average pool-
ing to capture the mean and peak value of features. The multi-layer
projector consists of pooling, convolution, and several multilayer
perceptron layers, and it projects the style features into a set of
K-dimensional latent style code, as shown in Figure 4.

After training, MSP can encode an artistic image into a set of
latent style code {zi |i ∈ [1,M], zi ∈ RK }, which can be plugged
into an existing style transfer network (i.e., replacing the mean and
variance in AdaIN [Huang and Belongie 2017]) as the guidance for
stylization. Next, we will describe how to jointly train MSP and
style transfer networks with a contrastive learning strategy.

3.2 Contrastive Style Learning
As demonstrated above, the style code {z1, z2, ..., zM } of an image
can be used as the target for MSP training and the guidance for
the style transfer network. However, we lack the ground-truth
style code for supervised training. Therefore, we adopt contrastive
learning and design a new contrastive style loss as an implicit
measurement for network training.

When train the MSP module, an image I and its augmented
version I+ (random resizing, cropping, and rotations) are fed into a
M-layer style feature extractor, which is the pre-trained VGG-19
network. The extracted style features are then sent to the multi-
layer projector, which is anM-layer neural network and maps the
style features to a set of K-dimensional vectors {z}. The contrastive
representation learns the visual styles of images by maximizing
the mutual information between I and I+ in contrast to other
artistic images within the dataset considered as negative samples
{I−}. Specifically, the images I , I+, and N negative samples are
respectively mapped into M groups of K-dimensional vectors z,
z+ ∈ RK and {z− ∈ RK }. The vectors are normalized to prevent
collapsing. Following [Van den Oord et al. 2018], we define the
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Figure 4: Overview of our MSP module, which includes a
VGG-19 based style feature extractor E and a multi-layer
projector P . P maps the extracted features to style codes
{z} which are saved in the style memory bank to compute
the contrastive style loss LMSP

contra . Image credits: {Giovanni
Battista Piranesi, Amedeo Modigliani}/AIC (CC0).

contrastive loss function to train our MSP module as:

LMSP
contra = −

M∑
i=1

log
exp(zi · z+i /τ )

exp(zi · z+i /τ ) +
∑N
j=1 exp(zi · z

−
i j
/τ )
, (1)

where · denotes the dot product of two vectors, and τ is a temper-
ature scaling factor and is set to be 0.07 in all of our experiments.
Meanwhile, we maintain a large dictionary of 4096 negative ex-
amples using a memory bank architecture following MOCO [He
et al. 2020]. It is worth noting that we calculate the contrastive
loss between images, as opposed to CUT [Park et al. 2020] which
adopts contrastive learning by cropping images into patches and
maximizing the mutual information between patches.

The contrastive representation also provides proper guidance
for the generatorG to transfer styles between images. We adopt the
same form of contrastive loss as used for learning MSP in Eq. (1),
but compute the loss using the contrastive representations of the
output image Ics and the reference style image Is , then Ics will have
a style similar to Is :

LG
contra = −

M∑
i=1

log
exp(z̃i · ẑi/τ )

exp(z̃i · ẑi/τ ) +
∑N
j=1 exp(z̃i · z

−
i j
/τ )
, (2)

where z̃ and ẑ denote the contrastive representation of Ics and Is ,
respectively. The negative examples are sampled from the same
dictionary used for training of the MSP module. Notably, we take
the specific generated and reference images as positive examples
and utilize contrastive loss as guidance to transfer styles, which is an
one-on-one process. Differently, the contrastive loss in IEST [Chen
et al. 2021a] is calculated only within generated results and it takes
a set of images as positive examples, which may reduce the style
consistency with the given reference (see Figure 2e).

3.3 Domain Enhancement
We introduce DE with adversarial loss to enable the network to
learn the style distribution Recent style transfer models employ
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GAN [Goodfellow et al. 2014] to align the distribution of generated
images with specific artistic images [Chen et al. 2021b; Lin et al.
2021]. The adversarial loss can enhance the holistic style of the
stylization results, while it strongly relies on the distribution of
datasets. Even with the specific artistic style loss, the generation
process is often not robust enough to be artifact-free.

Differently from these previous methods, we divide the images
in the training set into realistic domain and artistic domain, and we
use two discriminators DR and DA to enhance them respectively
(see Figure 3). During the training process, we first randomly select
an image from the realistic domain as the content image Ic and
another image from the artistic domain as the style image Is . Ic
and Is are used as the real samples of DR and DA, respectively. The
generated image Ics = G(Ic , Is ) is used as the fake sample of DA.
We exchange the content and style images to generate an image
Isc = G(Is , Ic ) as the fake sample of DR . The adversarial loss is:

Ladv =E[logDR (Ic )] + E[log(1 − DR (Ics ))]

+ E[logDA(Is )] + E[log(1 − DA(Isc ))],
(3)

To maintain the content information of the content image in the
process of style transfer between the two domains, we also add a
cycle consistency loss:

Lcyc = E[∥Ic −G(Ics , Ic )∥1] + E[∥Is −G(Isc , Is )∥1]. (4)

3.4 Network Training
Our full objective function for training of the generator G and
discriminators DR and DA is formulated as:

L(G,DR ,DA) = λ1Ladv + λ2Lcyc + λ3L
G
contra , (5)

where λ1, λ2, and λ3 are weights to balance different loss terms. We
set λ1 = 1, λ2 = 2, and λ3 = 0.2 in all of our experiments.

Implementation details. We collect 100,000 artistic images in
different styles from WikiArt [Phillips and Mackintosh 2011] and
randomly sample 20,000 images as our artistic dataset. We averagely
sample 20,000 images from Places365 [Zhou et al. 2018] as realistic
image dataset. We train and evaluate our framework on those
artistic and realistic images. In the training phase, all images are
loaded with 256× 256 resolution. The number of feature map layers
M is set to be 4. The dimension K of style latent code is set to
512, 1024, 2048, and 2048 for the four different layers, respectively.
We use Adam [Kingma and Ba 2014] as optimizer with β1 = 0.5,
β2 = 0.999, and a batch size of 4. The initial learning rate is set
to 1 × 10−4 and linear decayed linear for total 8 × 105 iterations.
The training process takes about 18 hours on one NVIDIA GeForce
RTX3090. We choose the same backbone as AdaIN [Huang and
Belongie 2017] in our experiments for simplicity. The results of
using other backbones are shown in the supplementary materials.

4 EXPERIMENTS
We compare CAST with several state-of-the-art style transfer meth-
ods, including NST [Gatys et al. 2016], AdaIN [Huang and Belongie
2017], LST [Li et al. 2019], SANet [Park and Lee 2019], ArtFlow [An
et al. 2021], MCCNet [Deng et al. 2021], AdaAttN [Liu et al. 2021b],
and IEST [Chen et al. 2021a]. All the baselines are trained using
publicly available implementations with default configurations. The
comparison of inference speed is shown in Table 1.

4.1 Qualitative Evaluation
We first present qualitative results of our method against the se-
lected state-of-the-art methods in Figure 5. The comparison shows
the superiority of CAST in terms of visual quality. NST is likely
to encounter the issue of unpleasant local minimum (e.g., the 1st,
3rd and 8th rows). AdaIN often fails to generate sharp details and
introduces undesired patterns that do not exist in style images
(e.g., the 1st, 3rd, 6th and 8th rows). LST tends to transfer low-level
style patterns like colors but the local details of strokes are often
ignored (e.g., the 2nd-5th rows). SANet often generates repetitive
patterns in the stylized images (e.g., the 2nd, 5th, 6th and 8th rows).
ArtFlow sometimes generates unexpected colors or patterns in
relatively smooth regions in some cases (e.g., the 1st-5th and 8th
rows). MCCNet can effectively preserve the input content but may
fail to capture the stroke details and often generates haloing artifacts
around object contours (e.g., the 2nd, 4th, 6th-8th rows). AdaAttN
cannot well capture some stroke patterns (e.g., the 1st, 2nd, 5th and
6th rows) and fails to transfer important colors of the style refer-
ences to the results (the 3rd and 8th rows). Although the generated
visual effects of IEST are of high quality, the usage of second-order
statistics as style representation causes color distortion (e.g., the 1st
row in Figure 2e and the 4th row in Figure 5) and cannot capture
the detailed stylized patterns (e.g., the regions of sky in the 5th and
7th rows in Figure 5). In particular, these state-of-the-art methods
cannot capture the leaving blank characteristic of Chinese painting
style in the 1st row of Figure 5 and fail to generate results with a
clean background.

In comparison, CAST achieves the best stylization performance
that balances characteristics of style patterns and content structures.
Instead of using second-order statistics as a global style descriptor,
we use an MSP module for style encoding with the help of a DE
module for effective learning of style distribution. Thus, CAST can
flexibly represent vivid local stroke characteristics and the overall
appearancewhile still preserving the content structure. For instance,
as shown in Figures 1j and 2c (the 2nd row), CAST successfully
captures the large portion of empty regions in the style images, and
it generates a stylization results which have salient objects in the
center and blank space around. The whole vague appearance of the
style image (drawn by Claude Monet) in Figures 1e and 2c (the 1st
row) is also effectively transferred to the content images.

4.2 Quantitative Evaluation
Weuse the content loss [Li et al. 2017], LPIPS [Chen et al. 2021a], and
deception rate [Sanakoyeu et al. 2018b] and conduct two user stud-
ies to evaluate our method quantitatively. The two user studies are
online surveys that cover art/computer science students/professors
and civil servants.

For content loss and LPIPS, we use a pre-trained VGG-19 and
compute the average perceptual distances between the content
image and the stylized image. The statistics are shown in Table 1. For
deception rate, we train a VGG-19 network to classify 10 styles on
WikiArt. Then, the deception rate is calculated as the percentage of
stylized images that are predicted by the pre-trained network as the
correct target styles. We report the deception rate for the proposed
CAST and the baseline models in the 2nd column of Table 1. As
observed, CAST achieves the highest accuracy and surpasses other
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Content Style Ours IEST AdaAttN MCCNet ArtFlow SANet LST AdaIN NST

Figure 5: Qualitative comparisons with several state-of-the-art style transfer methods, including IEST [Chen et al. 2021a],
AdaAttN [Liu et al. 2021b], MCCNet [Deng et al. 2021], ArtFlow [An et al. 2021], SANet [Park and Lee 2019], LST [Li et al.
2019], AdaIN [Huang and Belongie 2017], and NST [Gatys et al. 2016]. Content image credits: Horse Pixabay/Pexels (CC0), Cat
Pixabay/Pexels (CC0). Style image credits (from the the 2nd row to the 7th row): {Richard Parkes Bonington, Philip William
May, Michel Ange Corneille, Claude Monet, Vincent van Gogh, Childe Hassam}/The Art Institute of Chicago (CC0).

methods by a large margin. As a reference, the mean accuracy of
the network on real images of the artists from WikiArt is 78%.

User Study I. We compare CAST with eight state-of-the-art style
transfer methods to evaluate which method generates results that
are most favored by humans. For each participant, 50 content-style
pairs are randomly selected and the stylized results of CAST and
one of the other methods are displayed in a random order. Then,
we ask the participant to choose the image that learns the most
characteristics from the style image. Participants were told that the
consistency of content and style was the primary metrics. The style
is subjective and the effectiveness of training also depends on their
understanding ability. Finally, we collect 3,400 votes from 68 partici-
pants. We report the percentage of votes for each method in the 3rd
column of Table 1. CAST obtains significantly higher preferences
in categories of Sketch, Chinese painting, and Impressionism.

User Study II. We design a novel user study to evaluate the
stylized images quantitatively, which is called the Stylized Authen-
ticity Detection (SAD). For each question, we show participants

ten artworks of similar styles, including two to four stylized fake
painting and ask them to select the synthetic ones. Within each
single question, the stylized paintings are generated by the same
method. Each participant finished 25 questions. Finally, we collect
2125 groups of results from 85 participants and use the average
precision and recall as the measurement for how likely the results
will be recognized as synthetics. Table 1 shows the statistics. The
paintings generated by CAST have the lowest chance to be decided
by people as fake paintings. We also notice that the precision and
recall of CAST is less than 50%, which means that users could
not tell the real ones from the fakes and tend to select more real
paintings as synthetics when doing the testing.

4.3 Ablation Study
Contrastive style loss. We remove the contrastive style loss from

Eq. (5) to train the model. As shown in Figures. 6e and 6i, the model
without our contrastive style loss cannot capture the color and the
stroke characteristics of the style image compared with the full
CAST model. The sharp pencil lines of the style image in the 1st
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(a) Content (b) Style (c) AdaIN (d) w/o DE (e) w/o LG
cont (f) mix-DE (g) one-DE (h) 1/2 cycle (i) full CAST

Figure 6: Ablation study results. From left to right: (a) content image; (b) style image; (c) AdaIN with perceptual loss; (d) CAST
without DE; (e) AdaIN with DE, and cycle consistency loss; (f) CAST using mixed DE; (g) CAST using one DE without the
realistic domain; (h) CAST trained with asymmetric cycle consistent loss by only reconstructing the realistic images; and (i)
full CAST model. Style image credits: Michel Ange Corneille/The Art Institute of Chicago (CC0), Steve Johnson/Pexels (CC0).

Table 1: Statistics of inference speed and quantitative comparison with state-of-the-art methods. The results of user study I
represent the average percentage of cases in which the result of the corresponding method is preferred compared with ours.
The results of user study II show the accuracy and recall of being selected as fake paintings by the participants. The best results
are in bold while the second best results are marked with underline.

Method CAST IEContraAST AdaAttN MCCNet Artflow SANet LST AdaIN NST
Inference time (ms/image)↓ 11 184 130 29 168 14 7 11 16863

Content loss↓ 0.148 0.155 0.162 0.117 0.172 0.150 0.155 0.176 0.188
LPIPS↓ 0.245 0.256 0.256 0.234 0.264 0.265 0.248 0.266 0.291

Deception Rate↑ 62.00% 56.42% 50.70% 46.37% 43.79% 51.87% 48.29% 51.00% 37.70%
User Study I - 30.25% 41.9% 38.3% 46.1% 44.7% 20.0% 29.8% 25.1%

User StudyII Precision↓ 43.69% 60.26% 58.64% 70.89% 56.81% 65.80% 65.49% 70.66% 60.18%
(SAD) Recall↓ 41.19% 58.67% 58.16% 72.76% 61.55% 62.55% 64.91% 75.93 64.76%

row become thick black lines. The textural oil painting strokes of
the style image in the 2nd row become smooth blocks, and the vivid
colors almost disappear. With the contrastive style loss, our full
model can faithfully transfer the brushstrokes, textures, and colors
from the input style image.

Domain enhancement. Our full CAST uses DE for realistic and
artistic images separately. We train a simplified CAST model using
one discriminator that mixes realistic and artistic images together
(mix-DE). As shown in Figure 6f, the results generated by mix-
DE model are acceptable, but the stroke details in the generated
images are weaker than the ones by the full CAST model. This
fact is due to the existence of a significant gap between the artistic
and realistic image domains. We further abandon all images from
realistic domain for ablation (one-DE). As shown in Figure 6g, the
results generated by one-DE model lack details.

Cycle consistency loss. To better evaluate the improvement of the
contrastive style loss on the style transfer task, we exclude the latent
promotion of cycle consistency loss from network training. The
reason is that the reconstruction process of artistic imagemay imply
style information. We train CAST with an asymmetric cycle consis-
tent loss, which only reconstructs the realistic images. The decoder
of the style transfer network is unaffected by the reconstruction of
the artistic image. As shown in Figure 6h, removing realistic image
reconstruction will lead to slightly degraded stylization results.

5 CONCLUSION AND FUTUREWORK
In this work, we present a novel framework, namely CAST, for
the task of arbitrary image style transfer. Instead of relying on
second-order metrics such as Gram matrix or mean/variance of
deep features, we use image features directly by introducing an
MSP module for style encoding. We develop a contrastive loss
function to leverage the available multi-style information in the
existing collection of artwork and help train the MSP module
and our generative style transfer network. We further propose
a DE scheme to effectively model the distribution of realistic and
artistic image domains. Extensive experimental results demonstrate
that our proposed CAST method achieves superior arbitrary style
transfer results compared with state-of-the-art approaches. In the
future, we plan to improve the contrastive style learning process
by considering artist and category information.
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