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Abstract—Cartoon animation video is a popular visual enter-
tainment form worldwide, however many classic animations were
produced in a 4:3 aspect ratio that is incompatible with mod-
ern widescreen displays. Existing methods like cropping lead to
information loss while retargeting causes distortion. Animation
companies still rely on manual labor to renovate classic cartoon
animations, which is tedious and labor-intensive, but can yield
higher-quality videos. Conventional extrapolation or inpainting
methods tailored for natural videos struggle with cartoon ani-
mations due to the lack of textures in anime, which affects the
motion estimation of the objects. In this article, we propose a novel
framework designed to automatically outpaint 4:3 anime to 16:9
via region-guided motion inference. Our core concept is to identify
the motion correspondences between frames within a sequence in
order to reconstruct missing pixels. Initially, we estimate optical
flow guided by region information to address challenges posed by
exaggerated movements and solid-color regions in cartoon anima-
tions. Subsequently, frames are stitched to produce a pre-filled
guide frame, offering structural clues for the extension of optical
flow maps. Finally, a voting and fusion scheme utilizes learned
fusion weights to blend the aligned neighboring reference frames,
resulting in the final outpainting frame. Extensive experiments
confirm the superiority of our approach over existing methods.

Index Terms—Cartoon animations, video outpainting, optical
flow, deep learning.

I. INTRODUCTION

ANIME is a worldwide popular visual entertainment and
art form with significant market demand. Though many

new titles have been created, there are still a large amount of
legacy and classic animations popular and enjoyed by audiences.
However, the old cartoon animations were usually produced in
4:3 aspect ratio resolutions, which do not match the commonly
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Fig. 1. Various approaches to extend the field-of-view.

used 16:9 aspect ratio or even wider screens at present. To
display a classic 4:3 cartoon animation video on a wider screen,
the animation is typically placed at the center of the screen,
with two wide black stripes on the left and right sides, respec-
tively(Fig. 1(a)). This significantly harms the visual experiences
of the audience.

To provide a visually pleasing experience, it is necessary
to remove the two wide black stripes and display the cartoon
animation in the full screen area. To do so, a straightforward
approach is to crop and stretch a 16:9 rectangular area in the 4:3
animation. However, cropping may lead to evident information
loss (Fig. 1(b)). Retargeting the cartoon animation frames from
4:3 to 16:9 (Fig. 1(c)) may lead to distortion of the content, even
with the state-of-the-art retargeting methods [1], [2], [3], [4], [5].
Therefore, the animation companies still rely on manual labor to
remake the classic anime videos, such as the movie of Monkey
King, Ronin Warriors, and Fullmetal Alchemist. As the artists
will preserve the original content and paint out the content on
the two sides that originally do not exist, the quality of the output
is significantly better than cropping or retargeting.

Nonetheless, manually outpainting a cartoon animation is
extremely tedious and labor-intensive. An automatic cartoon
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Fig. 2. Existing optical flow estimation methods on cartoon animations. The
existing motion estimation methods tailored for natural videos generally cannot
work well in cartoon animations.

animation outpainting method is highly in demand. However,
such a task is not easy. Firstly, the outpainted cartoon animations
frames should be temporally smooth and consistent for visual
pleasantness. This suggests that the content to be outpainted at
the two sides should be guided by not only the current frame,
but the neighboring frames as well. Secondly, the movement
of objects in cartoon animations may be exaggerated and not
obey the physical laws, therefore, the existing motion estimation
methods tailored for natural videos generally cannot work well in
cartoon animations [6], [7] (Fig. 2). Finally, cartoon animations
frequently use solid-color regions to depict objects, leading to a
general fact of lack of texture, which further complicates the
motion estimation and makes existing natural video tailored
methods unsuccessful. As shown in Fig. 2, the existing methods
are quite error-prone when handling solid-color regions which
are quite common in cartoon animations.

In this paper, to resolve the mentioned problems, we propose
a novel cartoon animation outpainting framework via a deep
learning approach with motion inference. The key idea of our
method is to find the motion correspondences of a cartoon
animation frame against a long sequence of neighbor frames in
the video so that we can have as much information as possible
to reconstruct the missing pixels on the two sides of the cartoon
animations. Then all frames are warped and aligned to this
frame so that the information from different frames can be
integrated for the outpainting. Therefore, our system is designed
to have three stages. In the first stage, we propose to estimate
the motion of the objects via optical flow estimation. Since the
existing optical flow methods are error-prone due to the lack
of textures in cartoon animations, we novelly propose to adopt
the guidance of regions in optical flow estimation. With the
guidance of regions, our method can well handle the optical
flow in flat-color regions. In the second stage, we stitch the
frames in sequence to produce a pre-filled guide frame. This
guidance frame can provide structural clues to extend the field
of view of the optical flow maps from 4:3 to 16:9. After the
reconstructed 16:9 optical flows, in the third stage, we align all
neighbor frames in the sequence to this frame to form a series
of reference frames. Finally, the reference frames are blended
with a novel voting and fusion scheme where the fusion weights
are generated by a deep learning network with a stacked channel
attention module. Extensive experiments have been conducted

to validate the effectiveness of our method (Fig. 1(f)). The main
contributions of this paper are summarized as follows:
� We propose a novel cartoon animation outpainting frame-

work based on region-guided motion inference. Remark-
ably, our proposed method is totally different from tradi-
tional retargeting methods to enlarge the input video.

� Due to the lack of texture, we proposed a novel cartoon
animation tailored optical flow estimation method guided
by regions.

� We propose the voting and fusion scheme to outpaint the
missing pixels based on the estimated optical flow.

II. RELATED WORK

In this section, we study the related work to our task. We
mainly categorize them into three approaches and briefly de-
scribe them in this session.

A. Image and Video Retargeting

Image and video retargeting are the technologies used to adap-
tively change the aspect ratio of images and video content based
on viewing devices [5], [8], [9], [10]. For image retargeting, it is
required to preserve the structural features of the subject as much
as possible during the change of aspect ratio. Seam carving [11]
is one of the most widely used methods for image retargeting, but
it is difficult to achieve consistent deformation across multiple
frames of the video. Moreover, it is hard to find a good energy
function to estimate the structure of cartoon animations. Cho
et al. [12] proposed a CNN-based image retargeting method to
determine the important part of the image and ensure the content
is remaining in the output through a pre-trained classification
module. Tan et al. [9] proposed to generate both narrow and
enlarged results at the same time and gradually optimize by
keeping the results consistent across multiple iterations. All three
methods above are image-based without the capability to main-
tain temporal consistency for videos. To deal with video, Cho
and Kang [13] proposed a foreground-aware video extrapolation
method with dynamic sensing of the foreground to extend the
video boundary. It reduced the unpleasant deformation during
the retargeting process and maintained temporal consistency.
Yan et al. [5] constructed a new energy function that consid-
ered both spatial and temporal constraints in video retargeting.
Kim et al. [14] proposed a deep neural network model that
can aggregate temporal features while maintaining temporal
consistency. This model can be used for fast video inpainting and
video retargeting tasks. Although video retargeting methods can
change the aspect ratio of video contents with flexibility, they
usually result in uneven content scaling [13], [14], [15], [16].
In contrast, we aim to preserve the composition of the original
cartoon animations within the 4:3 field-of-view.

B. Video Inpainting

Video inpainting aims to repair the missing areas in the
video while maintaining temporal and spatial consistency [17],
[18], [19], [20], [21], [22]. Their inference of the image-level
content is usually from the hole’s surrounding pixels, while the
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temporal consistency is generally maintained through optical
flow estimation and maintenance. For example, Xu et al. [19]
used a coarse-to-fine strategy to refine optical flow in hole
area, then used optical flow to guide the propagation of pixels
between frames. Gao et al. [23] extracted and repaired the line
information in the optical flow to generate a sharper motion
boundary to contribute a higher quality result through non-local
pixel propagation. Some methods used the attention mechanism
to capture the frame correlations. For example, Onion-Peel
Network [24] used pixel-level attention to fill holes in the video
gradually. Lee et al. [21] used the attention between frames
to align and fuse the content of multiple frames to obtain the
content in the hole. STTN [22] introduced the transformer model
to encode the temporal and spatial information of the video
sequence to achieve the balance of performance and efficiency.
Some methods formulated video inpainting as a constrained
image generation problem and used GANs to generate the
content of the missing regions. For example, Chang et al. [25]
used temporal SN-PatchGAN [26] and temporal-shift modules
to repair irregular-shaped masks. E2FGVI [27] proposed an end-
to-end optical flow-based video inpainting method by applying
optical flow warps to image features and embedding them in the
network. FGT [28] proposed a new flow-guided Transformer
method that used the motion differences of optical flow to guide
attention retrieval and achieve high-fidelity video restoration
with improved efficiency through window partitioning strategies
and flow weighting modules. Although these methods have
achieved good results in video inpainting, the solid-color region
in cartoon animation videos often lead to the failure of optical
flow estimation and the confusion of motion boundaries. It
brings difficulties to these methods in cartoon animation video.
This paper proposes an image enhancement method that can
improve the performance of optical flow models trained on
natural image data when applied to cartoon animation videos.

Additionally, there were a few works dedicated to image
inpainting in the cartoon field, such as Seamless Manga Inpaint-
ing [29], which inpainted bubbles in comics by decomposing
the comic and inpainting the layers separately before merging
them. However, it is targeted for manga images, which are still
very different from cartoon images. The open source project
Anime Inpainting [30] used an edge connection [31] model
retrained with a cartoon dataset to perform inpainting of anime
characters. However, the Edge-Connection model was designed
for natural image inpainting, so it was difficult to address the
target area of cartoon animation outpainting, and it was also
difficult to achieve temporal consistency requirements. Sketch-
based Hairstyle Editing [32] focused on inpainting and editing
the hairstyle of anime characters based on sketch lines, but it
was difficult to cope with the various application scenarios of
cartoon animation. These methods provide special optimization
ideas for manga or cartoon images, but they are all challenging
to use for the task of cartoon animation outpainting since all
of these method were tailored for inpainting task instead of
outpainting. For inpainting tasks, surrounding information could
be utilized to fill in the pixels of a hole, while neighboring
information of the sides is less useful. This is mainly because the
information to support outpainting is much less than hole-filling.

With the extension of the outpainting boundaries, these models
will become less and less confident in recovering the contents.

C. Video Extrapolation and Outpainting

The task of video extrapolation is to use a given video se-
quence to predict the peripheral information of the sequence
that has not yet appeared in the video [33], [34], or outside
the visible area of the video. To extend to a wider field of
view with a given video, the method of [35], [36], [37] used
blurred pixels to fill the surrounding area of the video content.
This method was effective under the visual assumption that the
viewer’s sight would not deviate from the main screen. However,
some studies have shown that viewers were more inclined to
look around when viewing wide-field content [38]. Based on this
consideration, the surrounding area of wide-field content should
still require a filling of visually natural content. Lee et al. [21]
used the 3D scene information recovered from the video to
guide the sampling and blending of different frames regions.
The surrounding area was filled with image blocks obtained from
neighboring frames. Ma et al. [39] also used 3D scene informa-
tion to expand the field of view while introducing the attention
mechanism and uncertainty analysis to improve the accuracy of
the results and enable the results to meet the requirements of
downstream tasks. Dehan et al. [40] processed the foreground
and background of the video separately, so they obtained good
outpainting results for the background area. However, they still
resulted in unbearable dissonance when dealing with foreground
objects moving to the boundary. And the extrapolated optical
flow based on the constant gradient also doesn’t have fine-grain
motion information.

This category of research is considered closest to our ob-
jective. However, these methods are tailored for natural videos
and usually require a very precise estimation of camera motion
and object locations. They do not allow apparent object motions
across frames to minimize the mismatch in frame warping and
blending. Unfortunately, in cartoons with hand-drawn content,
we cannot obtain precise camera parameters or 3D reconstruc-
tion of objects, thus the existing solutions generally fail when
applied on cartoons and animations.

III. METHODOLOGY

In this work, we propose to solve the challenge of field-
of-view (FOV) outpainting in cartoon animations using deep
learning. The key motivation is to find motion correspondences
of frameSi at time i against its neighbor frames in the sequenceS
and align these frames with time iby motion-based warping. Due
to camera and object motion, those pixels that do not appear inSi

may present in the other frames in S . Suppose that these pixels
are warped outside the original 4:3 FOV of Si after alignment;
they shall contain additional information than Si. Thus, we can
blend them to construct a much wider FOV of the input.

To collect these useful pixels scattered in other frames, some
methods like [21], [22], [24], [41] use neural network to perceive
the correlation and differences between frames, and infer the
content that can be filled in the target area. However, limited
by the model capacity, these methods are difficult to deal with
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Fig. 3. Method Overview. Our method consists of three main stages: anime optical flow estimation, optical flow outpainting, and cartoon frame outpainting.

the situation where the clues are scattered in far away frames,
like video outpainting. Therefore, during video outpainting,
extracting pixel correspondence and filling target area are better
separated as two stages, which can more flexibly use the cor-
respondence between pixels and enable every single module to
focus more on different tasks.

Under such principle, we have our framework with a three-
stage design. In contrast to natural videos, the estimation of
motion information in cartoon animations often encounters more
errors. To address such challenges, our first stage is dedicated
to cartoon animation optical flow extraction. Specifically, we
propose a region-based method for cartoon animation optical
flow extraction, which enhances the performance by employing
different enhancements on lines and regions. In the second
stage, we aim at the wide-FOV motion outpainting of 16:9
bi-directional optical flows from adjacent 4:3 frame pairs in
S . The FOV extension of optical flows helps to stabilize the
frame alignment to Si, especially at the boundary locations, as
the 4:3 optical flow cannot sufficiently estimate the motion of
disappearing pixels. After that, in the third stage, we align neigh-
bor frames of Si in S to time i by SoftSplat warping [42] with
the outpainted 16:9 optical flows and form a series of reference
frames Ri. Commonly, the reference frames farther away from
time i shall contain more information on the target areas, but the
motion may contain more errors to affect its alignment and vice
versa. To blend the reference frames with precision, we propose
our method of cartoon frames outpainting. The method compares
all reference frames to Si and estimates the reliability to use a
certain reference frame to fill in the extra FOV. We convert the
reliability into pixel-wise weights to blend all reference frames
to complete the FOV outpainting process. The whole process is
illustrated in Fig. 3 and we process all frames in S individually
as input to complete the whole sequence.

We will introduce these three stages in detail as follows.

A. Anime Optical Flow Estimation

The ideal content of the area have been repaired should be
consistent with that appeared in the video. To obtain information
from neighboring frames, some existing methods [21], [22],
[24], [41] proposed to feed multiple frames instead of a single
frame to the network. However, without explicit analysis of the
motion of the objects, these methods fail to reconstruct the large
areas on the sides (Fig. 1(d)). Some video extrapolation and
inpainting methods [23], [27], [28] use inter-frame optical flow

to estimate the motion of the objects and use it as the guidance
for pixel propagation (Fig. 1(e)). So it is necessary to extract
the motion between frames to correspond pixels from known
to unknown. In previous studies, methods that perceive motion
based on tools like attention are often difficult to achieve good
results in outpainting, while methods based on optical flow can
gradually perceive far-frame information through the motion
information stored in optical flow. And avoids the limitation of
the model capacity. Therefore, our method is based on optical
flow for cartoon animation outpainting.

In this stage, we focus on estimating the wide high-quality
optical flow from cartoon animations. In recent years, deep learn-
ing methods have been applied to motion estimation resulting
in the development of several excellent optical flow estimation
methods, such as FlowNet [43], RAFT [6], PWC-Net [44], and
GMFlow [7]. However, all these methods are designed for the
natural style videos, while they are not suitable for cartoon ani-
mations. Unlike natural videos, cartoon animations are typically
produced by first drawing sketch lines as a structural framework
and then filling colors in different regions. As a result, cartoon
animations exhibit thicker structural lines and contain large areas
of solid colors. The former leads to unclear motion boundaries,
while the latter often results in erroneous feature matching.

In order to reduce the optical flow mismatch caused by the
thick sketches and the lack of texture in animation frames,
we first perform feature enhancement on animation frames by
incorporating additional information from regions and lines.

Anime Region Enhancement: To improve the optical flow
estimation due to the lack of textures, we first use the line draw-
ings extracted from the cartoon animation frames to compute
the segmentation boundaries for different regions in the input.
Subsequently, we compute the distance transformation of the
line drawings for each region as the texture coding for that target
region. This texture encoding is solely dependent on the shape
and size of the region, effectively marking unique pixels within
the region with minimal computational requirements, as shown
in Fig. 4. The distance transformation is computed as follows:

Er(a) =
||a− proj(a, L)||√

H ∗W + ε (1)

where a denotes a point that inner the region,L denotes the point
set of the image sketch line, proj(a, L) denotes the projection of
point a on the point setL,H andW denotes the height and width
of the image respectively, ε denotes a base constant number.
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Fig. 4. Our proposed region encoding method. The left part displays the input
sketch line image, the right part demonstrates the visualization of the generated
region encoding.

Fig. 5. Our proposed sketch line encoding method. The left image is the input
sketch line, where Cr, Cg , and Cb separately represent the mass centers in the
original image of the channel R, G and B, and a represents a point in the image
that needs to be encoded. The encoding ofa is composed of∠aCrCg ,∠aCgCb,
and ∠aCbCr . The right image shows the visualization of the generated line
encoding.

Sketch Line Enhancement: The thick sketch lines in animation
frames tend to cause pixel mismatching and tearing artifacts near
the line boundaries when computing the feature correspondence.
To mitigate this problem, we propose to re-encode line pixels
within the animation frame. Based on our practical and prelimi-
nary experiments, we find out that there exists a motion-invariant
coordinate system that is relatively static to the objects inside the
scene, and can move along with almost the exact camera motion.
This enables a semantically identical point on the boundary to
be consistently encoded on different frames.

During the process of motion, the movement of the image
mass center often approximates the scene’s motion, thus the
image mass center is a suitable anchor point for this coordinate
system. Based on a single anchor point, the coordinates of each
point on the image can be encoded using an angle value and a
distance value (similar to polar coordinates). However, due to
the direct correlation between the distance value and the image
size, this encoding scheme fails to maintain consistency during
common motion patterns such as image scaling. Therefore, we
extend the number of anchor points and uniquely encode points
on the sketch lines using a set of angle values to multiple anchor
points, as shown in Fig. 5.

Specifically, we calculate the mass center separately for the
different channels of the input frame in RGB color space. The
mass centers form a triplet Cr, Cg , and Cb as anchor points
to form a triangle. Denote the three sides of the triangle as
CrCg , CgCb, and CbCr, for any point a in the image, the
position of the point can be described by the angle between
the line aCr, aCg, aCb and CrCg, CgCb, CbCr. Here, we select
∠aCrCg , ∠aCgCb, and ∠aCbCr to describe the position of a,
as illustrated in Fig. 5.

We employed the following formula to combine the results of
texture enhancement and line encoding into the original image:

Iline = Mline

(
α ∗ Iori + (1− α) ∗ El

(
Iori

))
(2)

Fig. 6. Cartoon Animation Optical Flow Outpainting.

Iregion = M̃line

(
β ∗ Iori + (1− β) ∗ Er

(
Iori

))
(3)

Iehc = Iline + Iregion (4)

where Iori denotes the original input frame, Mline is the binary
line mask to the input image, El(I

ori) is the new line encoding,
Er(I

ori) is the distance field generated from Mline, Iline de-
notes the line enhanced image, Iregion denotes the region texture
enhanced image, Iehc is the final enhanced image, α and β are
the blending constant number.

So, we can use above enhancement combined with the other
optical flow model based on natural style data to obtain more
accurate optical flow estimate results on animations. In our
experiments, the animation optical flowF1→2 is performed using
the optical flow estimation model RAFT [6]:

F1→2 = RAFT
(
Iehc1 , Iehc2

)
(5)

B. Optical Flow Outpainting

After the bidirectional optical flow of the cartoon animation
is obtained, content alignment can be performed frame by frame
to expand the field of view for each frame. Unfortunately, during
the propagation of pixels from distant frames to the current
frame, the lack of optical flow vector guidance in the target area
results in pixel loss, limiting the expansion of the field of view
to a range close to the known regions.

To avoid losing motion guidance in the target area during
pixel propagation, it is necessary to widen the extracted bidirec-
tional narrow field-of-view optical flow F . Previous methods
have often used Poisson filling (FGVC [23]) or coarse-to-fine
approaches based on neighborhood pixel inference (DFCS [19]),
but Poisson filling does not consider structural information in the
image, and neighborhood pixel inference methods struggle to
generate reliable structure for areas far from the boundaries. We
think that structural cues in the input frame sequenceS are useful
to guide optical flow outpainting. Building on this idea, we com-
plete optical flow outpainting through three steps: first, we stitch
the cartoon frames together and pre-filling the target region of the
current frame. Next, we employ a pre-trained image encoder to
extract cues P from the pre-filled guidance frame IG. Finally, a
U-shaped network is employed to receive the cues P and predict
optical flow information in the target region, as shown in Fig. 6.
The details of the three parts are described as follows.

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on March 10,2025 at 04:15:08 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: CARTOON ANIMATION OUTPAINTING WITH REGION-GUIDED MOTION INFERENCE 2091

Fig. 7. Cartoon Animation stitching and align to Si.

Frame Stitching and Pre-filling: Due to the rigid nature of
objects during motion, the motion boundaries in optical flow
often exhibit a high degree of consistency with the structural
information in the image. Such structural cues can be extracted
from the input frame sequence S , which can effectively guide
the restoration of optical flow F in the target region. However,
the self-contained nature of video frames renders much of the
structural information of the scene and object in S redundant.
Therefore, we think it is critical to eliminate this redundancy and
distill the crucial visual cues that contribute to reconstructing the
optical flows beyond the original FOV. This is accomplished by
initially conducting homography-based stitching forS , allowing
for a rough but efficient affine alignment of structures. This
preliminary transformation serves as a beneficial initialization
for subsequent optical flow reconstruction.

As shown in Fig. 7, our method first uses the middle frame
Smid (mid = 1

2 length(S)) as the basis and stitches all cartoon
frames together by homography based on feature matching. This
can remove most redundant structural information from cartoon
frames at a low cost, and generate a rough scene frame SC.
During the process of optical flow outpainting for a frame Si,
the scene frame SC can be aligned to the current frame and
components of a pre-filled guidance image IGi .

Structure Cues Extraction: Due to the unreasonable structures
or seams in the pre-filled guide frames, it is necessary to predict
the long-range relationship between reliable content in the center
area and the pre-filled content on both sides. The CNN-based
architecture is not suitable for this situation. Therefore, we
fine-tune a pre-trained Swin-Transformer [45] encoder to ex-
tract structural cues. Specifically, we use a pre-trained Swin-
Transformer [45] classification encoder to extract features at
multiple scales (1/2, 1/4 and 1/8) from the pre-filled guidance
image IGa and compose them as a guidance cue pyramid P for
optical flow outpainting.

Optical Flow Outpainting: Considering that the structural
guidance cues P contains all object structural information, not
all of these structural features will become motion boundaries in
the flow vector setFa→b. Moreover, potential incorrect matching
during the generation of the scene frame may lead to structural
errors in the structural guidance cue. To better select the most
relevant information in P , we propose a structural cue query
block to select and filter appropriate features forFa→b, as shown
in Fig. 8.

To extend the FOV of optical flow, we first use the U-Net
downscaling blocks to compute the multiscale feature f1/k, k ∈
(1/2, 1/4, 1/8) for the 4:3 optical flow Fa→b. For each scale of
feature f , the query block searches in the corresponding level
of the structural cue P1/k and finds the best features through a
modified Squeeze-and-Excitement (SE) channel attention [46].

Fig. 8. Structural cue query block. The input is the optical flow feature
f1/k and the structural guidance cue P1/k . The output is the queried and the

fused feature f̂1/k . ⊗ represents multiplication with broadcasting. ⊕ represents
element-wise addition.

The SE block concatenates P1/k and f1/k along the channel
direction and squeezes each channel into a single point repre-
sentation. Two dense layers further activate the squeezed vector
to construct the excitement weight vector α1/k for P1/k. The
weight vector α1/k works as the channel weight that amplifies
the information in P1/k that are directly related to the query

f1/k, to form the queried structural cue P̂1/k. Finally, the queried
structural cues are fused with f1/k as the U-Net feature at the
scale of 1/k. We illustrate the functionality of the feature query
block in Fig. 8. The final output of the stage is refined and
outpainted 16:9 version of the input optical flow. We denote
it as F̂a→b.

Training Objective: We apply the smooth L1 loss [47] as the
training objective in this stage. Note that we only use this loss
for bootstrapping purposes and will remove it during the joint
training of the whole framework, as we do not obtain the ground
truth 16:9 optical flow for our training animations. The loss is
defined as:

LOF
outpainting =

⎧⎨
⎩0.5

(
F̂ − FGT

)2

if |F̂ − FGT | < 1

|F̂ − FGT | − 0.5 otherwise
(6)

where F̂ andFGT denotes the predicted optical flow and ground
truth, respectively.

C. Cartoon Frames Outpainting

Once the 16:9 optical flow is obtained, utilizing information
from distant frames, expansion can be achieved at a considerable
scale. Based on the outpainted 16:9 optical flow, we align all
neighboring frames St

i to time i into a list of reference frames
Rt

i, where t represents the time difference. The alignment reveals
the out-of-FOV pixels of the original 4:3 input Si, which is the
key source of the frame outpainting in the next step.

We apply the SoftSplat model [42] for frame warping based on
optical flow. Note that we only compute the bidirectional optical
flow of adjacent frames in the previous step. To warp the frame
more than 1 time step to St

i , we warp it multiple times instead of
accumulating the optical flow for smoothness. We shall discuss
the way to assemble the reference frames with St

i to reconstruct
the full 16:9 FOV frame Ŝi in the following part.
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Fig. 9. Cartoon Frame Outpainting.

Due to the error in optical flow estimation and warping,
the reference frames cannot be directly used for field-of-view
outpainting. A direct blending of the reference frames may
cause visual artifacts such as blurring and noticeable seams,
especially when the reference frame is far away from the input.
For the reference frames that are close to time i, their optical flow
estimation with Si are usually of good quality due to the limited
motion. However, the small motion may not provide sufficient
information to complete the whole 16:9 FOV for outpainting.
Those reference frames far away from time i contain more
information for frame outpainting but may suffer from imprecise
motion estimation. Based on this finding, we propose the third
stage of cartoon frame outpainting to assemble all reference
frames and the input frame Si for precise FOV outpainting.
In this stage, we first learn two feature-level scores for each
reference frame to validate its reliability for outpainting. We
then use a deep neural network to convert the reliability score
to the linear fusion weights of reference frames to blend the
outpainted area. The pipeline of this stage is illustrated in Fig. 9.

Reference Frame Reliability Estimation: We compute two
multiscale features to reflect the reference frame reliability:
an alignment feature μa to estimate the alignment quality of
the reference frame Rt

i to the input and a smoothness fea-
ture μs to estimate the visual quality and completeness of
the reference frame. Both features are computed in the illus-
tration2vec (I2V) [48] encoder domain. Compared to direct
pixel-level difference estimation, the feature-level estimation
enables a higher level of semantic understanding and comparison
of image contents [27]. Additionally, the pixel-level comparison
cannot handle incomplete image compositions, for example,
for the regions outside the 4:3 FOV of the input where no
ground truth alignments exist. In comparison, the feature-level
estimation can still approximate the alignment because of the
larger receptive field. Moreover, the I2V features are tailored
to recognize illustrations and cartoons, which are more suitable
for our task than the VGG model [49]. We extract features from
the relu2_1, relu3_2 and relu4_2 layers for further processing.
These features are on three different scales, and we represent the
feature extraction operator as f I2V

1/k (·), where k ∈ {2, 4, 8}.
For each reference image Rt

i, we compute the alignment fea-
ture μa based on a nonlinear mapping of the feature differences
under the I2V encoding, as:

μa
1/k

(Rt
i

)
= NLa

1/k

(
f I2V
1/k

(Rt
i

)− f I2V
1/k (Si)

)
, (7)

Fig. 10. Visualization of the estimation of the reference frame reliability. The
blue box marks the ripping artifact which could be detected by the smoothness
score. The red box marks a successful alignment around the 4:3 FOV boundary.

where NLa
1/k is a two-block composition of Conv-BN -ReLU

weights for scale 1/k. We choose a higher level of features
k = 4 and 8 in the I2V encoder for a larger receptive field for
alignment estimation.

Additionally, due to the error in the previous stage of optical
flow outpainting, some pixels may be distorted or ripped off after
warping, causing discontinued local image neighborhood (e.g.,
the blue box in Fig. 10). We compute the smoothness score μs

by comparing the difference between the pixel and the mean of
its local window:

μs
1/k

(Rt
i

)
= NLs

1/k

(
f I2V
1/k

(Rt
i

)−Avg3×3

(
f I2V
1/k

(Rt
i

)))
(8)

where Avgx×y is the average pooling kernel sized x× y and
NLs

1/k is another set of nonlinear mapping layers. We choose
the lower level of the I2V features by setting k = 2, because the
smoothness estimations are more fine-grained. Especially, we
add a pixel-level smoothness featureμs

1 as the lowest level ofμs:

μs
1

(Rt
i

)
= NLs

1

(Rt
i −Avg3×3

(Rt
i

))
, (9)

We set all NLa and NLs output the same number of channels
as 16.

Reference Frame Voting and Fusion: To convert the mul-
tichannel feature-based score μs and μa back to the linear
blending weight for the reference frame Rt

i, we first integrate
the two scores into a single score c for each feature scale:

c1/k
(Rt

i

)
= NLc

1/k

(
μs
1/k

(Rt
i

)
, μc

1/k

(Rt
i

))
, (10)

where the NLc is a 1 × 1 convolution block with 16 output
channels. In some certain feature level k, there could be only
the μs or the μa feature existing. In that case, we simply halve
the input shape of theNLc layer for that scale and keep the other
settings remained.
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With the multiscale reliability feature c1/k obtained, we first
upsample it to the original image scale, then fuse all scales by
linear sum. Then we compare the score c across all reference
frames Ri to compose the weight w(Rt

i) for each specific refer-
ence frameRt

i. Suppose that we haven reference frames, we will
have a total of 16× n channels to represent the reliability of all
reference frames. We first concatenate them along the channel di-
rection and apply multiple stackedChannelAttn-Conv-ReLU
blocks, or, in short, the CCR blocks. The CCR blocks help to
emphasize the differences in reliability between frames for all
image locations with the channel attention mechanism [46]. We
apply a total number of CCR blocks, and the output dimensions
are 16×, 32×, 32×, and 1× of n. Finally, we obtain n different
scoresw(Rt

i) for the reference frames by replacing the activation
function of the last block with Softmax, which normalizes these
weights. In this stage, we only perform the fusion outside the
4:3 FOV, as the pixels inside the 4:3 FOV have ground truths
and are not meant to be changed.

Under rare conditions, the fusion weights may not fully cover
the whole 16:9 frame size because the motion in the neighbor
frames of Si is too subtle to provide essential information,
or the motion is too extreme to be well aligned. Under such
circumstances, we can perform image inpainting methods such
as [26] to complete the unfilled regions that could be computed
by estimating a mask M̂i to represent the filling status of a pixel:

M̂i = 1 if
t∏

n=−t

(1−mn
i )(1− ŵn

i ) = 1, (11)

wheremn
i denotes the valid warped pixels of the reference image

Rt
i and the multiplication is the hadamard product.
Training Objective: After the bootstrapping of the second

stage, we jointly train the whole framework with the image-level
MSE loss as the only and the ultimate supervision:

Lframe
outpainting = EM̂i

(
Ŝi − SGT

i

)2

/3, (12)

where Ŝi is the fused output frame and SGT
i is the ground truth

16:9 FOV frame. We compute this loss over the valid area in M̂i.

D. Temporal Consistency Processing

After processing frames one by one, the field of view (FOV)
of the cartoon animation is expanded, and the structural consis-
tency of each frame is maintained by the motion information.
However, due to potential inconsistencies in the color of non-
local frames in the input and errors introduced by single-frame
processing, there may be some flickering in the restored region.
We use a simplified network from blind filter [50] to eliminate
this inconsistency and apply a loss of temporal consistency [50]
to constrain the training process.

Specifically, we extract and smooth the temporal informa-
tion between two adjacent frames. Denote the unsmoothed and
time-smoothed results by E and Ŝ , respectively. The (Ŝi−1, Ei)
and the input frame pair (Si,Si−1) comprise the input of this
model. These two image pairs individually go through two
convolutional layers to extract image features and temporal
differences. Parameters on two paths do not share weights.

Fig. 11. Temporal consistency processing to remove the flickering artifact.

Next, we use a convolutional layer to blend the features of the
two branches and then pass five consecutive residual blocks for
processing. Finally, the temporally smoothed output frame Ŝi is
obtained through two convolutional layers with upsampling. To
maintain the outpainted structure information after processing,
skip-connections are added between the layers shown in Fig. 11.

The temporal smooth loss [50] we used is:

LTS =
SL∑
i=2

(λt ∗ Lt + λp ∗ Lp) (13)

where i denotes the time stamp on the input sequence S , SL
is the length of the sequence, λt and λp are the weights for the
temporal loss Lt and the perceptual loss of the content Lp, re-
spectively. Specifically, λt = 80 and λp = 1. This combination
effectively balances the reduction of temporal flickering and
the minimization of perceptual distance. A lower λt/λp ratio
causes the network’s optimization to be predominantly driven
by perceptual loss, which may induce temporal flickering in the
reconstructed regions. On the other hand, increasing the λt/λp

ratio tends to result in excessive blurring of the output videos,
thus increasing the perceptual distance of the processed videos.
This has been demonstrated in paper [50] dealing with temporal
consistency.

We compute the temporal loss as the warping error between
the output frames:

Lt = Mi⇒i−1

(
Ŝi − f

(
Ŝi−1

))2

(14)

Mi⇒i−1 = exp
(−α

∥∥SGT
i − f

(SGT
i−1

)∥∥) (15)

where f(Ŝi−1) is the frame Ŝi−1 warped by optical flowFi⇒i−1,
and Mi⇒i−1 is the occlusion mask calculated from the warping
error between the ground truth frames SGT

i and the warped
ground truth frame f(SGT

i−1). The optical flow Fi⇒i−1 is the
backward flow betweenSGT

i−1 andSGT
i . We use bilinear sampling

to warp frames and empirically set α = 50 (with pixel range
between [0, 1])

Since the style of cartoon animation is different from natural
style images, we use an image encoder [48] dedicated to the
classification of cartoon illustrations to calculate the perceptual
loss Lp.

Lp =
∑
l

∥∥∥φl

(
Ŝi

)
− φl

(SGT
t

)∥∥∥
1

(16)

where l denotes the scale level in the I2V encoder, symbol
φl(·) denotes the feature activation at the l-th layer of the I2V
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Fig. 12. Ablation Study of anime augmentation method. Improving input images with line and region-based methods can enhance the ability of optical flow
models to process anime images in various ways. And the best results are achieved when both enhancement methods are combined, as demonstrated in the red and
blue box areas of the image.

encoder, Ŝi is the temporally smoothed result and SGT
i is the

ground truth frame.

IV. EXPERIMENTS

A. Experiment Details

Experiment Platform: Our experimental platform has an Intel
i7-7700 K CPU, 32 GB DDR4 memory, and NVIDIA Geforce
RTX 3090 GPU with 24 GB memory.

Dataset: We collect our training data from the internet. The
dataset contains more than 1000 cartoon animation clips of
more than 40 different titles of animations. Cartoon animations
have various origins. They come from different countries and
are created in different eras. More importantly, we carefully
choose the animation clips to cover a vast diversity of motion
types, including but not limited to camera zooming, panning,
yaw and pitch translation, subjects running, dancing, flying, and
many other visual effects. In our experiments, the frame size
is downscaled to 480× 270, while we can still process larger
frames if necessary. To simulate 4:3 FOV, we apply intra-frame
zero-padding at the boundaries. The training and test set are
separated with a 7:3 split. Given the fact that the essence of our
approach is to leverage information from neighboring frames
to assist in outpainting the target frame, achieving high-quality
results usually necessitates a balanced level of motion, neither
static nor overly drastic. When the motion falls within this opti-
mal range, our dataset size can ensure a stable outpainted result.

Data Augmentation: To improve the model’s robustness, we
conducted several data augmentations during training. These in-
cluded random horizontal and vertical image flipping, sequence

order reversal, and randomly selected outpainting ratios ranging
from 1.3 to 2.0.

Training Details: We implemented the whole framework in
PyTorch 1.8.0 with CUDA 11.0. The batch size during training
has been set to 16. We compute a total number of n reference
frames for voting and fusion for each input frame. We employ
the SGD optimizer throughout the training process. The second
stage was bootstrapped for 300 epochs, and the learning rate was
reduced from 3e-2 to 2e-5 with an exponential decay strategy.
Then we train the complete framework for 200 epochs, and the
learning rate is gradually reduced 1e-2 to 1e-7 with the same
exponential decay.

B. Ablation Study

1) Animation Frame Enhancement: To verify the effective-
ness of the proposed frame enhancement method for the estima-
tion of optical flow in anime, we performed ablation experiments
on the AnimeRun [52] dataset using RAFT [6] as the baseline
method.

We retrained the RAFT model on the original AnimeRun
dataset (Fig. 12(b)), the AnimeRun dataset with sketch line
enhancement (Fig. 12(c)), the AnimeRun dataset with region
enhancement (Fig. 12(d)), and the AnimeRun dataset with both
sketch line and region enhancement (Fig. 12(e)), respectively.

In the first example, RAFT’s output contained numerous detail
errors in the wheel areas due to the unique challenges presented
by anime frames (shown in red and blue boxes). By enhancing
the image data based on sketch lines, our method was able to
better highlight the motion details in the smaller wheel area
(shown in red box), and by region-based enhancement, the
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Fig. 13. Ablation Study of optical flow outpainting model. The first column shows the superposition of the two frames. The second column shows the optical flow
outpainted only using the U-Net [51] network. The third column shows the results generated by the Unet and directly using the structural clues. The fourth column
shows the result obtained by adding the proposed structural clue query block while using structural clues. The fifth column shows the pseudo-labels extracted from
16:9 input frames.

results can show good emphasis of the motion details in the
larger wheel area (shown in blue box). In the final results, both
enhancement methods complemented each other and achieved
better results than using either method alone.

In the second example, the motion boundary of the foreground
extracted by RAFT is not clear (red box area), which has two
reasons. First, the special line characteristics of anime images
make this type of boundary area difficult to match correctly.
After enhancing the image with sketch lines, the situation of
motion boundaries is improved(red box). Second, due to the
pure color and low-texture areas in the background, it is difficult
to locate the features, and similar areas can be found in other
parts of the background(blue box). After applying region-based
enhancement to the image, the motion boundary in the red box
and the motion situation of the pure color area in the background
are improved(blue box).

2) Optical Flow Outpainting: During the outpainting stage
of optical flow, we extract optical flow from 4:3 input cartoon
frames and expand the field of view of the optical flow based
on structural clues provided by the reference frame. To verify
the effectiveness of the model, we tested its performance under
conditions with and without structural clues.

As shown in Fig. 13, it can be seen that under experimental
conditions, structural cues can effectively guide the optical flow
restoration.

3) Reference Frames Reliability Estimation: As shown in
Fig. 14, there are some alignment errors, pixel splashing, and
small holes in a single aligned frame. Therefore, we propose two
reliability scores for this: an alignment score and a smoothness
score, which are demonstrated on the right side of Fig. 14. The
alignment score assigns higher activation levels to areas with
alignment errors, while the smoothness score assigns higher ac-
tivation levels to areas with pixel splashing and hole edges. Fur-
thermore, we pre-use a pixel valid mask to mark large hole areas.

C. Comparison Experiments

1) Visual Comparison: We conduct a visual comparison on
our test dataset with three main competitors: the video inpainting
method E2FGVI [27], the extrapolation method FGVC [23] and

Fig. 14. Visualization of two different reliability scores. The top left image
shows the 16:9 ground truth frame of our current target frame. The blue box
parts are cropped as 4:3 input and fed into the network. The bottom left image
shows a reference frame generated by aligning neighboring frames to the input.
The top right image displays the alignment score, while the bottom right image
shows the smoothness score.

the video outpainting method [40]. The comparison results are
illustrated in Fig. 15.

We first compare our method to the video inpainting method
E2FGVI [27], and we find that their “inpainted” results cannot
fully complete the 16:9 field of view. As shown in Fig. 15(a),
most of their results suffer from the blurring and scratch artifacts
as if the field of view are covered by a mystery mask. We believe
this is because the E2FGVI method is designed for hole filling
based on the information of surrounded pixels. In our task, the
method may find it difficult to guess the external regions by
growing the boundary pixels only.

FGVC [23] achieves competitive results among our competi-
tors. Their results are usually free from blurring artifacts and
manage to repair the missing FOVs for some videos. However,
we see apparent tearing, slicing and trailing artifacts around
the 4:3 FOV boundaries (as shown in the second and the fifth
examples in Fig. 15(b)). Moreover, their results may introduce
extra unwanted objects copied from the subject, which breaks
the original video composition and may confuse the audience, as
shown in the fifth example in Fig. 15(b). We believe this is due
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Fig. 15. Visual comparison against our competitors. The examples shown in the first through third rows demonstrate the results of cropping 16:9 cartoon
animations to 4:3 as inputs. The examples in the fourth through sixth rows show the results of classic 4:3 cartoon animations as inputs (without 16:9 ground truth).
The green, red, blue, and yellow boxes mark some important areas.

to its limited motion estimation ability when processing video
sequences of enormous motion.

Among the competitors, the video outpainting method [40]
is same to our task. It expands the field of view by sepa-
rately processing the foreground and background. However, the
method uses only gradient minimization to solve the flow value
when completing the optical flow. This leads to difficulties in
predicting the motion of the repaired area, particularly when the
foreground object moves to the edge of the frame (as shown in
the third example in Fig. 15(c)).

In sharp contrast, our method features a more advanced car-
toon animation optical flow estimation that is guided by region
information to better predict motion, which leads to higher
quality after the final blending in the extra FOV. Thanks to
the high-quality motion estimation, our results are free from
ghosting and blurring artifacts. Moreover, the cartoon frame out-
painting stage helps ensure the sharpness and reduces the tearing
and distortion artifacts in the results (as shown in Fig. 15(d)).

Retargeting Methods: There has been some research on retar-
geting methods for changing the aspect ratio of media content.
However, most of these methods use energy functions to evaluate

Fig. 16. Results generated by video retargeting method EFVR [5] and our
methods.

the importance of each pixel and perform uneven scaling of the
objects in the image, which can damage the structural features of
the content. Compared to methods of this kind, our method has
significant technical advantages. In this section, we have chosen
EFVR [5] as a representative method for retargeting to display
the results. As shown in Fig. 16, the repositioning method is
challenging to fully preserve the structural characteristics of the
objects when changing the aspect ratio.
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Fig. 17. Outpaint results of the Seamless Manga Inpainting [29] in cartoon
fields.

TABLE I
QUANTITATIVE EVALUATION OF THE VIDEO OUTPAINTING QUALITY

Cartoon Fields Methods: There have been some studies on
image restoration techniques for cartoon. And the research on
manga inpainting is relatively active. However, applying these
techniques to our task is not effective due to significant differ-
ences between the features of manga and anime. In this section,
we chose Seamless Manga Inpainting [29] as a representative
method for manga inpainting to showcase its effectiveness in
Fig. 17.

Another anime inpainting project uses anime data to retrain
image inpainting methods, such as EdgeConnect [31], which
were designed for natural images. However, due to the dif-
ferences between images and videos, these methods cannot
maintain temporal consistency when applied to video content.
Therefore, we conducted a comparative experiment using a
video inpainting method [27] designed for natural image videos
but retrained on our anime datasets. The results are shown in
Fig. 15.

2) Quantitative Comparison: The superiority of our ap-
proach is also proven with a quantitative study shown in Table I.
We choose PSNR, SSIM [53], MSE, LPIPS [54], VFID [55], and
flow warping error Ewarp [50] to evaluate the performance of
the relevant methods. Specifically, PSNR, SSIM, and MSE are
utilized for distortion-oriented video assessment, while LPIPS
and VFID are employed for evaluating perceptual similarity
from the perspectives of images and videos, respectively. More-
over, the flow warping error Ewarp is used to measure temporal
stability. We achieve the best scores in all metrics except flow
warping error. We believe the advantage does not only come
from our high visual quality but also a more precise assembly of
reference frames. In comparison, the competitors may not fully
recover the motion and may tend to guess the information in the
outpainting area and thus fail to recover the ground truth frame
faithfully. Furthermore, we argue that there is an equilibrium
between perceptual distance and temporal consistency (13), even
though the Video Outpaint method [40] has achieved the best
flow warping error, its other metrics have been much worse
than ours, which means that to ensure temporal consistency, the
model sacrifices quite a lot of image quality and faithfulness in
preserving the original image contents from the motion priors.

Fig. 18. y-t slices of the frame sequence results are shown, where the left
side displays the ground truth frame and the green and red boxes indicate the
sampling positions for the slices. The right side displays the slice results of the
sequence, where the left half corresponds to the green box area and the right
half corresponds to the red box area.

TABLE II
COMPUTATIONAL EFFICIENCY ANALYSIS

Fig. 19. Artifacts caused by inpainting.

D. Temporal Consistency

To further evaluate the performance of the method on the
entire video sequence, we experiment with video sequences with
various motion styles. Fig. 18 shows the results of the y-t slice of
the video, and more video results are shown in the supplementary
material. It can be seen that our method has the ability to preserve
temporal consistency.

E. Computational Efficiency Analysis

We calculate the computational efficiency on a dataset of ap-
proximately 600 frames of cartoon animation in 10 videos. The
image size of each frame is 360× 270. The computation time for
the three subprocedures: anime optical flow estimation, optical
flow outpainting, and cartoon frames outpainting is shown in
Table II.

F. Discussions

1) Limitations: Although our approach manages to outpaint
the FOV for most of the videos, there is still a small portion
of the videos that may not be fully outpainted, as described
in Section III. Firstly, if the video does not provide sufficient
information to fix the target area of all frames, we used image-
based inpainting to complete the unfilled regions. This may
cause human-observable temporal inconsistency at the corner
locations, such as Fig. 19. In addition, we find that our method
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Fig. 20. Outpainting results of the cartoon video with complex camera movement. In this example, we demonstrate a challenging case with a combination of
character movement and a fast rotating camera. The frames are consecutively sampled without skipping. Our results are obtained by the proposed outpainting
approach from the center-cropped 4:3 area. The last two lines are the forward optical flow obtained from the anime flow estimation stage and the extended forward
optical flow obtained from the anime flow estimation stage, respectively.

is relatively weak in processing the beginning and ending of
sequences, as the outpainting can only receive clues from one
temporal direction. Human assistance may still be required in
some of those cases.

Secondly, extending animations in a sequential manner can be
influenced by the results of earlier stages. Suppose the predicted
or extended optical flow is inaccurate, it may result in the loss of
guidance from optical flow vectors. Consequently, this prevents
the stable propagation of pixels from neighboring frames to
the current frame, hindering the achievement of the desired
outpainting results. As illustrated in Fig. 20, When encountering
rapid non-linear camera movements, optical flow predictions
sometimes fall short of accuracy (as shown in the first frame
of Fig. 20, where the optical flow estimation on the left-hand
side of the character is problematic). This incorrect optical flow
estimation causes the error to propagate to the extended optical
flow outside the original 4:3 area, resulting in textures and
structures mistakenly appearing in the exterior area, in addition
to some distortion issues depicted in this figure.

Finally, our proposed method is still feasible when dealing
with natural videos; however, our tailored approaches such as
sketch enhancement and region enhancement are not optimized
for natural scenes and thus may not achieve human-preferred
results on natural videos.

2) Future Work: Considering that the latest diffusion models
have made significant progress in the fields of image and video
generation, we posit that the application of diffusion method-
ologies to cartoon animation outpainting represents a highly
promising avenue for research. In our future research, we plan

to explore and develop this method in depth to further improve
the quality of cartoon animation outpainting.

V. CONCLUSION

We propose a novel cartoon animations outpainting frame-
work that extends the field of view of 4:3 cartoon animations to
16:9 without any prior knowledge of the camera or the objects.
The key insight of the FOV inference from motion directs us to
construct the three-stage design of anime optical flow estimation,
optical flow outpainting and cartoon frames outpainting. We
have achieved high-quality artifact-free outpainting for a vast
diversity of cartoon animations with the three-stage design.
Both qualitative and quantitative experiments show that our
approach has achieved the highest output quality amongst all
state-of-the-art methods.
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