
Curve-Skeleton Extraction Using Iterative
Least Squares Optimization

Yu-Shuen Wang and Tong-Yee Lee, Member, IEEE

Abstract—A curve skeleton is a compact representation of 3D objects and has numerous applications. It can be used to describe

an object’s geometry and topology. In this paper, we introduce a novel approach for computing curve skeletons for volumetric

representations of the input models. Our algorithm consists of three major steps: 1) using iterative least squares optimization to shrink

models and, at the same time, preserving their geometries and topologies, 2) extracting curve skeletons through the thinning algorithm,

and 3) pruning unnecessary branches based on shrinking ratios. The proposed method is less sensitive to noise on the surface of

models and can generate smoother skeletons. In addition, our shrinking algorithm requires little computation, since the optimization

system can be factorized and stored in the precomputational step. We demonstrate several extracted skeletons that help evaluate our

algorithm. We also experimentally compare the proposed method with other well-known methods. Experimental results show

advantages when using our method over other techniques.

Index Terms—Curve skeletons, shrinking, iterative least squares optimization, thinning, branch pruning.

Ç

1 INTRODUCTION

SKELETON extraction plays a very important role in many
applications, including virtual colonoscopies and virtual

endoscopies [19], [20], collision detection [28], computer
animation [6], [17], [18], [23], [25], [26], [29], [30], [39], [41],
3D object registration and visualization [3], [4], [33], surface
reconstruction [27], shape matching [9], [34], [35], vessel
tracking [3], and curved planar reformation [21], [22]. There
are several properties or requests for skeletons because
there are different requirements for different applications.
These properties include homotopy, connectivity, hierar-
chy, model reconstruction, thinness, centeredness, robust-
ness, reliability, smoothness, etc. However, some of these
properties conflict with one another, for example, thinness
and model reconstruction. It is difficult to consider these
two properties at the same time. Therefore, researchers have
developed various algorithms to extract skeletons with
different properties for different requirements.

There have been many methods developed for comput-
ing skeletons since they can be used in a broad array of
areas. However, most of these methods are sensitive to
noise or are computationally expensive when used to obtain
results. Both shortcomings cannot be simultaneously
avoided. In this paper, we introduce a novel algorithm for
extracting curve skeletons with the following two advan-
tages: they are 1) computational efficiency and 2) noise
insensitivity. Our key idea is to shrink the volumetric model
into a thinner one, which allows for a better shape when
extracting a skeleton. To implement this idea, we shorten

the distances between adjacent voxels and simultaneously
constrain the boundary voxels close to their original
positions. We then apply a traditional thinning algorithm
[32] to remove voxels from the model’s boundary when
obtaining a 1D skeleton. The extracted skeleton is smooth
and close to the model’s center, since the voxels are moved
during the shrinking process.

2 RELATED WORK

There have been many skeleton extraction algorithms
proposed for 2D shapes and 3D models. In 2D, skeletons
are represented by a medial axis. However, in 3D, some
algorithms extract medial surfaces, and some extract one-
voxel thick curve skeletons. Formally, the skeleton is a set of
centers of maximal inscribed balls that can be either a
medial axis or surface. Let X � <3 be a 3D object, and the
skeleton Sk � X represents the centers of those inscribed
balls. However, this kind of skeleton is not adequate for all
kinds of applications. As mentioned earlier, a skeleton has
many different properties due to different requirements.
Therefore, it is difficult to give a precise definition for a
curve skeleton. In addition, many methods have been
proposed that deal with different types of models such as
polyhedral models [14], [23], [24], [28], [37], volumetric
models [5], [7], [10], [13], [17], [18], [19], [20], [31], [40], and
point cloud sets [1], [8], [27], [36]. These algorithms can be
generally classified into four groups: thinning, distance
field, geometric methods, and general field functions. These
classifications are briefly described in the following para-
graphs. For more details, please refer to [12] and [27].

Among these four classifications, the thinning methods are
very efficient. These methods remove the voxels from the
model’s boundary until there is no qualified voxel that can be
removed. By applying masks to test if the boundary voxels
can be removed or not, thinning algorithms are able to
preserve the model’s topology. However, the extracted
skeletons are not always smooth by thinning algorithms

926 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

. The authors are with the Computer Graphics Group/Visual System
Laboratory, Department of Computer Science and Information Engineer-
ing, National Cheng-Kung University, No. 1, Ta-Hsueh Road, Tainan,
701, Taiwan, R.O.C.
E-mail: braveheart@csie.ncku.edu.tw, tonylee@ncku.edu.tw.

Manuscript received 14 July 2007; revised 5 Nov. 2007; accepted 5 Feb. 2008;
published online 19 Feb. 2008.
Recommended for acceptance by M.-P. Cani.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2007-07-0084.
Digital Object Identifier no. 10.1109/TVCG.2008.38.

1077-2626/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

and are sensitive to surface perturbation. Distance field
algorithms can also efficiently extract skeletons. They first
determine the distance for each voxel to its nearest boundary
and then obtain the skeleton from those ridges. With results
similar to thinning methods, the extracted skeletons are not
always smooth and are also sensitive to noise.

In order to compute smooth skeletons from various
models, some researchers propose potential field algorithms,
which also compute a value for each voxel. When determining
the field, they consider larger boundary areas, rather than just
the closest boundary voxel. This strategy avoids tiny differ-
ences on the model’s surface, and therefore, the extracted
skeletons are smooth and insensitive to noise. However, the
algorithms suffer from heavy computation since determining
the field of an interior voxel takes into account many
boundary voxels, which may result in an Oðn2Þ computation
cost, where n represents the number of voxels.

Some methods extract skeletons by computing the
medial axis. However, there is a common problem with
these algorithms. They do not directly extract thin skeletons
from 3D models because a large portion of the medial
surface has the same distance to the boundary. Therefore,
the postprocessing methods are needed. For instance, [14]
computes the medial geodesic function when defining the
center of a medial surface and erodes the faces to obtain a
thin skeleton. Their method extracts very good skeletons
from polyhedral models. However, the method suffers from
heavy computation since the shortest paths algorithm is
used to determine the geodesic distance.

In this paper, a volumetric model is considered as a graph.
There is also a connected edge between each 6-adjacent voxel
pair. By minimizing our proposed energy function, we
transform the graph into a thinner version, which briefly
represents the model’s shape. By applying the thinning
algorithm, the voxels on the shrunk model are then system-
atically removed to extract a 1D skeleton. Our algorithm
costs low computation because solving the objective function
and iteratively removing the boundary voxels are both
efficient. We utilize the efficiency and homotopy properties
of the thinning method but enhance its robustness against
noise and the smoothness of the extracted skeletons by using
this shrinking algorithm.

3 ALGORITHM

3.1 Overview

Our algorithm computes the skeletons from volumetric
models. The polyhedral models used in this paper are

first voxelized by using [16]. In addition, we consider the
two voxels connected if they share the same face (i.e.,
6-adjacency). In other words, the volumetric model is
represented as a graph, G ¼ fV;Eg, with nodes V and
edges E, where V ¼ ½vT1 ;vT2 ; . . . ;vTk � and vi 2 <3 denotes the
position of the voxel center (Fig. 1). We classify the voxels
into two groups, one of which consists of the boundary
voxels @V and the other consisting of interior voxels
V� @V. The interior voxels are inside the model, which
have six neighbors, while the boundary voxels are located
on the model’s surface. Initially, the edge lengths connecting
the neighboring voxels are the same (Fig. 2a). To transform
the original model G to the shrunk model G0, our algorithm
shortens the connected edges, as well as more closely retains
the boundary voxels @V to their original positions (Fig. 2b).
To implement this idea, we formulate the shrinking process
as an objective function and iteratively update voxel
positions. Thereafter, the thinning algorithm [32] is applied
to remove the boundary voxels of G0; the 1D skeleton
Sk � G0 is then obtained. In contrast to the skeleton
computed by directly thinning, our extracted skeleton is
smoother and closer to the model’s center (Fig. 2d).

3.2 Shrinking

Obviously, a skeleton is a 1D representation containing
zero volume. Based on this criterion, our goal is to extract
the model’s skeleton by reducing its volume. Our method
shrinks a model by contracting the edges between adjacent
voxels. However, homogeneously shortening edge lengths
results in only a smaller version of the original model and
repeating the same method merely contracts the model into
a point. To preserve the model’s geometry, we add forces
that pull the boundary voxels back to their original
positions, denoted as boundary constraints. These forces
can reduce the movement of boundary voxels and therefore
preserve the model’s features. Specifically, we illustrate this
idea in Fig. 3c. The shrunk model is represented in green,
and the forces that constrain the boundary voxels are
represented with blue lines. In this example, it is clear to see
that most of the forces pull the boundary voxels upward or

WANG AND LEE: CURVE-SKELETON EXTRACTION USING ITERATIVE LEAST SQUARES OPTIMIZATION 927

Fig. 1. The volumetric model is considered as a graph, and the
6-adjacency relationship is determined.

Fig. 2. System overview. (a) The original volumetric model. (b) The
shrunk model transformed by our algorithm. (c) By applying the thinning
method to the original model, the extracted skeleton is jagged and
deviates from the model’s center. (d) By applying the thinning method to
our shrunk model, a smooth and centered skeleton is obtained.

downward. Thus, the resultant forces prevent the model
from shrinking in a vertical direction. In other words, with
the aid of the boundary constraints, we can shrink a model
nonhomogeneously and transform the model into a thinner
version (Fig. 3d). We repeat this manner when shrinking a
model, which can possibly prevent features from missing.
To implement this idea, we reduce the volume of model G
in an iterative manner, which repeatedly updates the voxel
positions from Vt to Vtþ1 (t is the iteration number). Our
shrinking algorithm is formulated as an objective function,
which consists of two energy terms: 1) the boundary
constraint EB and 2) the edge contraction EQ.

3.2.1 Boundary Constraint

To preserve the model’s geometry, the shapes of G and G0

should be similar. Therefore, we constrain the movement of
boundary voxels, which forces the voxels to remain closer to

their original positions. Specifically, we minimize the
energy term:

EB ¼
X
jvtþ1
b � vtbj

2 vb 2 @V: ð1Þ

3.2.2 Edge Contraction

We attempt to shorten the edge lengths to shrink a model.
Obviously, the contraction amounts for different edges vary
since our goal is to shrink the model nonhomogeneously. In

other words, some edges should be compressed more, but
some should be less. However, we have no idea how to

decide the contraction amounts for different directions.
Fortunately, our boundary constraints help us achieve this

goal because the lengths of some edges should be longer
than others in order to resist a significant change in the
model’s shape. Thus, we introduce the energy:

EQ ¼
X
fi;jg2E

vtþ1
i � vtþ1

j

� �
� ptij

� �2
vti � vtj

� �����
����
2

v 2 V; ð2Þ

where ptij ¼ ltij=lt�1
ij is the contraction ratio, and ltij and lt�1

ij

are the lengths of vti � vtj and vt�1
i � vt�1

j , respectively. In the

beginning, we set p0
ij ¼ 0 and apply only EB to preserve the

model’s geometry. Since the boundary constraints limit the

movement of some voxels, we can therefore obtain the

contraction ratios of edges after the first iteration. We also

square the value of ptij to let the edge contract more if its

contraction ratio is smaller (i.e., larger shrinkage) than

others. Note that it is possible for ptij to become larger than

1.0 during the shrinking process. In this case, we set

ptij ¼ 1:0. Otherwise, the edge will become much longer in

the next iteration.

3.2.3 Solving Optimization

By combining the two energy terms, we compute the

shrunk model by minimizing

argmin
V

EQ þ wEB; ð3Þ

where ! is the weighting factor that determines the degree

of shrinkage in each iteration (! ¼ 0:3 in most of our

experimental results). To minimize the objective function,

we formulate (3) using a least squares system in the form

Ax ¼ b:

Q

B

� �
½Vtþ1� ¼

ptij

� �2
vti � vtj

� �
�@V t

2
64

3
75; ð4Þ

where

Qij ¼
1 ; if j ¼ ei1;
�1; if j ¼ ei2;
0; otherwise;

8><
>:

Bij ¼
w; if j ¼ ri 2 R;
0; otherwise;

�

�ij ¼
w; if i ¼ j;
0; otherwise:

�
ð5Þ

R is the set of indices of the boundary voxels, and ei1 and

ei2 denotes the two voxels of edge ei, respectively. We

solve the shrunk model G0 by updating the voxel

928 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

Fig. 3. (a) The original model. (b) We shrink the model (green) without applying boundary constraints. (c) In this case, the boundary forces (blue
lines) try to pull the voxels back to their original positions. (d) The geometry is therefore preserved by combining the contraction of edge lengths and
boundary constraints.

positions Vt and the contraction ratio ptij iteratively. Note

that the model’s (i.e., G) structure remains unchanged

during minimization. Therefore, it is not necessary to

factorize the constant matrix A in each iteration. Applying

backsubstitution to iteratively update the voxel positions

is very efficient. We demonstrate the timing statistics in

Table 1.
For the implementation detail, the shrinking process

starts by precomputing the Cholesky factorization of the

matrix ATA and then applying a back substitution to

solve V1 (i.e., V0 ¼ V is the voxel set of the original

model). In the beginning, we consider p0
ij ¼ 0; our system

computes the new voxel set V1 according to this given

information. Further computations are performed by

recomputing the contraction ratios ptij and using them to

solve Vtþ1. This iterative solver shrinks the model to

achieve zero volume. We terminate the iteration when the

model is thin enough.

3.2.4 Stop Conditions

An iterative solver always needs a stop condition to

terminate the repeated process. Our shrinking method

stops when the shrinkage is close to zero. Therefore, we

define the degree of shrinkage by computing the edge

lengths before and after each step:

SðVtÞ ¼
P
fi;jg2E vti � vtj

��� ���
P
fi;jg2E v0

i � v0
j

��� ��� v 2 V: ð6Þ

Obviously, the degree of shrinkage SðVtÞ decays when we

shrink the model. Furthermore, the first derivative of SðVtÞ
also decays at the same time, and the value close to 0

suggests that the model is thin enough and is difficult to

further shrink. We stop the shrinking process in this

situation. In this paper, the process is terminated when

@SðVtÞ is lower than � (� ¼ 0:01 in all of our experimental

results).

3.3 Iterative Thinning

We apply [32] when simplifying the shrunk model to a
1D skeleton. This method repeatedly removes boundary
voxels by using its 26-adjacent connectivity. We record
this connectivity before applying the shrinking algo-
rithm. Since only the voxel positions are moved during
the shrinking process, the connectivity of G and G0 are
the same. By applying the thinning algorithm on the
two models, we can obtain skeletons with the same
structures; only their appearances are different. Although
applying the thinning algorithm to simplify the original
model would result in jagged and unsmooth skeleton,
applying the same method to our shrunk model would
not have this problem. This is because the voxels are
transferred to better positions. As for preserving the
model’s topology, Palágyi and Kuba have developed
14 masks and 12 directions to test if the boundary voxel
can be removed or not. Our iterative thinning also
enjoys this advantage due to their contributions. In this
paper, the voxels remaining after the thinning algorithm
are considered skeleton nodes.

The positions of the skeleton nodes change during the
shrinking algorithm. Thus, we must connect nodes via their
edges. Otherwise, they are only meaningless points
(Fig. 4a). However, we cannot simply assume that the two
skeleton nodes are connected if there exists a 26-adjacency
between them; otherwise, the incorrect tiny loop with three
edges would be potentially created after the edge connec-
tion (Fig. 4b). This mistake results from the ambiguous
relationship of the thinned skeleton. For instance, in Fig. 5,
the connectivity represented by red dotted lines produces a
tiny three-edge loop, and the edges should not be all
connected, although the nodes are adjacent. In this paper,
we remove the loops with only three edges to overcome this
problem.1 We test if this connection causes a 3-edge cycle
before it is added to the skeleton. The test is quite simple

WANG AND LEE: CURVE-SKELETON EXTRACTION USING ITERATIVE LEAST SQUARES OPTIMIZATION 929

TABLE 1
Parameters, Model Information, and Timing Statistics (Seconds)

1. It is possible to remove some very small and important loops. We can
choose a smaller voxel size to avoid this problem. In this manner, any legal
loop is represented in more detail with more edges and thus would not be
deleted.

since only the adjacent voxels require consideration. We
show the results after connecting the skeleton nodes in
Fig. 4c.

3.4 Branch Pruning

Many algorithms use a pruning step to remove unnecessary
branches [2], [15]. Our method as well needs this step because
the thinning algorithm leaves behind many unnecessary
branches while extracting skeletons. As shown in Fig. 7a,
although the skeleton’s appearance appears to be free of
redundant branches, the tiny branches still exist. This is
because the shrinking method shortens the connected edges
and, therefore, those unnecessary branches become much
smaller. In our algorithm, the edges are not equally shortened
since the boundary restrictionEb, and the various contraction
ratios pij are used at different edges. Generally, from our
observation, the branches with little shrinkage represent the
model’s features and thus are considered important. In other
words, we prune the branches that are much more shortened
after the shrinking process.

The connectivity of G and G0 is the same since the
shrinking algorithm only moves the voxels to new posi-
tions. One-to-one mapping between G and G0 still exists.
Thus, we can record the original position of each skeleton
node and determine the amount of shrinkage by comparing
the edge lengths before and after the shrinking algorithm.
We measure the amount of shrinkage for the entire
skeleton, formulated as CR ¼ L0=L, where L and L0 denote
the entire skeleton length before and after the shrinking
algorithm, respectively. Similarly, we compute the shrink-
ing ratio for each branch with the same method, denoted as
CP . The branches with larger amounts of shrinkage are then
pruned because they are less important. Depending on our
definition, the branch with lower CP is shrunk more, and

the branch with higher CP maintains its length. Before
pruning any branch, we select the smallest CP and denote
the value as CS . We then discard the branch if its CP is
smaller than ðCR þ CSÞ=2. As shown in Fig. 6, the structure
of a branch is sometimes changed if a branch is discarded.
Therefore, after pruning each trivial branch, we need to
refine all branch structures. This pruning algorithm stops
when the smallest CP is larger than ðCR þ CSÞ=2. Note that
we do not execute the process if there are no redundant
branches to be pruned. In the case of CR < 2CS , we skip the
pruning step and do not remove any branches. Further-
more, the value of CS does not change while branches are
being discarded; our algorithm computes CS only in the
beginning and fixes it as a constant value. Otherwise, the
value will repeatedly increase and important branches may
be pruned.

In our experiment, our automatic pruning works well on
many models. However, sometimes it is hard to determine
if a branch is necessary or not because some of them are
meaningful to humans. Hence, in addition to this automatic
approach, we also let the user prune the branches using a
tuning parameter. Let us denote CU be the given threshold.
Our system prunes the branch if its shrinking ratio CP is
smaller than CU .

4 RESULTS AND DISCUSSION

4.1 Experimental Evaluation

We apply our algorithm to extract curve skeletons from
several polyhedral models and show the results in Fig. 9. In
these experimental results, the redundant branches are
automatically pruned without the input parameter CU . To

930 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

Fig. 6. Branches a and b are displayed in green and blue, respectively.

Note that the structure of branch b is changed after branch a is

discarded.

Fig. 5. In this figure, there are six skeleton nodes with their 26-adjacent

connectivity represented by red lines. An internal loop is formed if all the

red dotted lines are connected (i.e., the original topology is changed).

Fig. 4. In this figure, we show skeleton nodes and their connectivity. (a) The skeleton nodes are meaningless because there is no connectivity.

(b) A skeleton with incorrect topology due to a naı̈ve connection. (c) Connectivity repaired through our simple test.

test the robustness of our method, we also add 20 percent
noise to each model and compare the results with the
skeletons extracted from the original model. We compute
the Peak Signal to Noise Ratio (PSNR) to determine the
similarity of the skeletons of the model and the correspond-
ing model with noise. For example, in the triceratops model,
the PSNR value of its two skeletons is 64.62. In our
experiments, the value of PSNR is between 50 and 60 since
the skeletons are extracted from different models. In
addition to noise, we also apply our algorithm to different
poses of the same model. For example, in Fig. 10, we
determine the curve skeletons of the kicking dinosaur and
then obtain similar skeletons. This property will be useful in
3D model retrieval applications and will potentially allow
for the retrieval of similar models with different poses
based on the skeletons extracted using our algorithm. Our
algorithm can also deal with the thin plate and degenerated
models. Results are shown in Fig. 8.

We have implemented our algorithm in C and have run it
on a Pentium 4 3.4-GHz PC. We solve the linear system using
the Choleskey solver provided by the Taucs library [38]. Since
factorizing the ATA matrix can be precomputed, each
shrinking iteration needs only a back substitution. Thus, the
total runtime in each of our experimental result takes only a
few seconds. The factorization step takes the most computa-
tion time in our algorithm, which depends on the number of
voxels and connected edges. In our experiment, it takes nearly
50 percent of the total runtime. We show the model
information, as well as their detailed timing statistics, in
Table 1.

4.2 Parameters

There are two major parameters required in our algo-
rithm, including 1) the weighting factor ! used in (3), and
2) the stop condition � that terminates the shrinking

process. Both parameters vary between 1.0 and 0.0. In
general, the larger ! enhances the system when shrinking
the model in the correct direction and more closely
preserves the skeleton to the model’s center. However,
in this manner, the speed of shrinkage becomes slower
with the completion of each step, and the iterative solver
requires more iterations to shrink the object. The stop
condition � determines how thin the shrunk model can
be; the thinner model enhances the smoothness of the
extracted skeleton. Similar to !, the lower � demonstrates
the better results but increases computations. Fig. 11
shows the influence of different ! and � when obtaining
results. Obviously, the extracted skeletons are similar,
although different parameters are given. In our experi-
ment, we found that ! ¼ 0:3 and � ¼ 0:01 can adequately
balance the quality, as well as the computation cost. We
use these two values in most of our experimental results.

4.3 Properties

The skeletons extracted using our algorithm are thin and
connected. Our algorithm enjoys the same advantages as the
thinning method, since we apply the method to remove
boundary voxels. In addition, the skeletons are smooth,
although we still apply the thinning algorithm. This is
because the energy function EQ shortens the edge lengths
and straightens each part of the skeleton. Therefore, the
skeleton extends without unnecessary turns and becomes
smoother. In this paper, we consider a curve smooth if the
curvature of each interval is similar. To evaluate the
smoothness of our skeleton, a measure function is proposed.
We accumulate the magnitude of curvature variations
between each pair of adjacent nodes, and use the value to
indicate if the curve is smooth or not. In addition, we
normalize this value so as to make the measurement
independent of the model size. Obviously, the smaller value
means smaller variations and, therefore, a smoother curve.
To implement this idea, we introduce the following formula:

Smoothness ¼
1

L

X
fi;jg2H

jki � kjj;

where ki ¼
X
j2MðiÞ

ni � nj
jni � njj

; n 2 N;
ð7Þ

WANG AND LEE: CURVE-SKELETON EXTRACTION USING ITERATIVE LEAST SQUARES OPTIMIZATION 931

Fig. 8. The skeletons extracted from the thin plate and sphere models.

Fig. 7. The skeleton looks clean since the redundant branches are much shorter than before. However, we still have to prune the unnecessary

branches to obtain a good structure. (a) The tiny branches on the tap. (b) The redundant branches are pruned by our algorithm.

L is the skeleton length, N and H denote the nodes and the
edges of the skeleton, respectively, and MðiÞ represents the
neighboring nodes of ni. For the tap results shown in
Figs. 2c and 2d, the smoothness of the skeleton extracted
from the thinning method and our algorithm are 69.465 and
33.515, respectively. Our skeleton is smoother.

Depending on the definition, the skeleton extracted
using our method does not exactly lie at the model’s center,
especially when a tiny ! is given. However, in order to
satisfy boundary constraints while shortening edge lengths,
the voxels must be moved toward the model’s center;
otherwise, the summation error of square lengths will
rapidly increase. In other words, our two energy functions
preserve the centering of the skeleton.

4.4 Comparison

We have compared our algorithm with an open software
implemented in [14]. The algorithm extracts pretty good
skeletons using only one parameter. However, the results
highly depend on the input parameter, even when the
value is only slightly changed. It requires the user to
carefully choose the parameter, especially when some
branches should be preserved, but some should be
pruned. Fig. 12 shows the results determined from
different parameters. It is clear that there are many
redundant branches if an unsuitable value is chosen. In
contrast to our proposed method, the two parameters are
easily determined (Fig. 11). The larger !, combined with

smaller �, always achieves better results. In addition, the
extracted skeletons are not sensitive to the parameter. The
results are quite similar although we give different values
for ! and �. As for the efficiency of the two methods, the
method in [14] takes 86 and 583 seconds to compute the
skeletons for the protein and triceratops models containing
12,381 and 17,496 vertices. Although the complexity of the
volumetric data (i.e., number of voxels) is much higher,
our algorithm is faster. It only takes 8 and 15 seconds to
extract skeletons from the models containing 45,455 and
50,565 voxels. Both algorithms have been tested on a
Pentium 4 3.4-GHz PC.

We also compare our algorithm to other methods,
including the thinning [32], distance field [17], geometric
[1], and general field [13] classes. However, it is not fair to
extract skeletons by ourselves, since these algorithms use
their own parameters to tune the results. We also have to
make sure that the implementations are exactly the same.
Fortunately, Cornea and Min [11] concludes the properties
and applications of several existing methods. Therefore,
we attempt to find the models shown in [11] and extract
their curve skeletons using our algorithm. We also add
noise to these models, since we claim that our algorithm
is robust against surface perturbation. The models and
their curve skeletons are shown in Fig. 13. Obviously, our
algorithm extracts clean and similar skeletons whether
noise is added or not. According to [11], only methods

932 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

Fig. 10. Although the poses of the dinosaurs are different, the structures of the extracted skeletons are still the same.

Fig. 9. We compare the skeletons determined from the model with and without noise. The extracted skeletons of the original models are shown in the

odd columns from left to right. Similarly, the skeletons of their corresponding models with 20 percent noise are shown in the even columns.

Obviously, our algorithm is less sensitive to noise since many skeletons of the original models are similar to those of noisy models.

computing potential fields can extract clean and smooth
skeletons. However, the computational complexity of

these methods are Oðn2Þ, where n is the number of
voxels that need more time to extract skeletons from

larger models. In addition, they miss the brontosaur’s tail

and have many branches located at the rabbit’s ear. As for
the thinning method, although the algorithm is very

efficient, the extracted skeletons are not smooth enough,
since the algorithm is sensitive to noise. In addition, the

skeleton found by the distance field method contains

WANG AND LEE: CURVE-SKELETON EXTRACTION USING ITERATIVE LEAST SQUARES OPTIMIZATION 933

Fig. 12. We compare our algorithm with the algorithm presented in [14]. Although both methods extract good skeletons, [14] is sensitive to the input

parameter. In contrast to that in Fig. 11, our algorithm is much more stable since the different parameters have far less influence on the results.

Fig. 11. This figure shows the results with different ! and �. Obviously, the extracted skeletons are similar in appearance. The results are insensitive
to input parameters.

many unnecessary branches, and many of them go out of
the model entirely. The geometric method computes
unusual results because the Reeb graph-based algorithm
extracts the skeleton in a bottom-up direction. They need
a nondirectional method to determine level sets. In
summary, our method can extract clean and smooth
skeletons with a lower computational cost while others
cannot.

4.5 Limitations

Our algorithm extracts curve skeletons that are insensitive
to perturbations on the model’s surface. For example, in
Fig. 14, the back and tail of the dinosaur have many jagged
edges, but most of them are dismissed after our shrinking
algorithm is applied. However, the algorithm still has
space for improvement. Because we shorten the edges to
thin the model, the resulting skeleton is straighter. Our
method potentially causes the skeleton to diverge from the
center of the model, especially thin positions, which tend to
bend a lot. For example, in Fig. 15, we use a tiny ! in (3);
the shrunk model is straight, and thus, the skeleton
protrudes out of the candleholder. In order to reduce this
problem, we can directly enlarge the value of !.

Extracting skeletons from volumetric models requires
the voxel size to be smaller than the features. Otherwise,
they cannot correctly represent the model’s details. In this
situation, we need to use a smaller voxel size to represent
features. However, this will significantly increase the
model’s complexity. Fig. 16 shows the hand skeletons
extracted using different voxel sizes. Obviously, the voxel
size should be very small since the fingers are close
together. Otherwise, they would be considered a single
component, and the wrong skeleton would be constructed.

An intuitive way for solving this problem is to use an
adaptive method that changes voxel sizes accordingly. We
will include this improvement in our methods in the near
future.

5 CONCLUSION AND FUTURE WORK

In conclusion, we have introduced a new and novel
approach for automatically extracting skeletons. It is based
on iterative least squares optimization that shrinks models
and applies the thinning algorithm to extract 1D skeletons.
Our algorithm takes less computation than other methods
that use the general field function and is more robust than
methods based on the distance field and thinning
algorithms. Several improvements to our algorithm will
be completed in the near future. We will attempt to
prevent the skeleton from diverging from the model’s
center. In addition, the adaptive volumetric models are
also useful in extracting skeletons because many regions
of the model can be represented using larger voxels.
Therefore, the number of voxels and edges are effectively
decreased and computations, in many aspects, will be
reduced.

ACKNOWLEDGMENTS

The authors would like to thank Dey and Sun [14] for
providing their open software and for helping with the
experimental comparisons between their methods and the
methods presented in this paper. The authors would also
like to thank the anonymous reviewers for helping in the
improvement of this paper. This work is supported by
the Landmark Program of the NCKU Top University
Project under Contract B0008 and is supported in part by
the National Science Council under Contracts NSC-95-
2221-E-006-193-MY2 and NSC-96-2628-E-006-200-MY3.

934 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

Fig. 14. The jagged edges on the dinosaur’s back and tail are dismissed

after the shrinking algorithm is applied. Fig. 15. The crutch is diverged from the center of the candleholder.

Fig. 13. We apply our algorithm to the models shown in [11] so as to compare the results with different methods.

REFERENCES

[1] N. Amenta, S. Choi, and R.K. Kolluri, “The Power Crust,” Proc.
Sixth ACM Symp. Solid Modeling and Applications (SMA ’01), pp. 249-
266, 2001.

[2] G. Aujay, F. Hetroy, F. Lazarus, and C. Depraz, “Harmonic
Skeleton for Realistic Character Animation,” Proc. ACM SIG-
GRAPH/Eurographics Symp. Computer Animation (SCA ’07), pp. 151-
160, 2007.

[3] S.R. Aylward and E. Bullitt, “Initialization, Noise, Singularities
and Scale in Height Ridge Traversal for Tubular Object Centerline
Extraction,” IEEE Trans. Medical Imaging, vol. 21, no. 2, pp. 61-75,
2002.

[4] S.R. Aylward, J. Jomier, S. Weeks, and E. Bullitt, “Registration
and Analysis of Vascular Images,” Int’l J. Computer Vision, vol. 55,
no. 2-3, pp. 123-138, 2003.

[5] G. Bertrand and Z. Aktouf, “A 3D Thinning Algorithm Using
Subfields,” Vision Geometry. SPIE, pp. 113-124, 1994.

[6] J. Bloomenthal, “Medial-Based Vertex Deformation,” Proc. ACM
SIGGRAPH/Eurographics Symp. Computer Animation (SCA ’02),
pp. 147-151, 2002.

[7] S. Bouix and K. Siddiqi, “Divergence-Based Medial Surfaces,”
Proc. Sixth European Conf. Computer Vision (ECCV ’00), pp. 603-618,
2000.

[8] J.W. Brandt and V.R. Algazi, “Continuous Skeleton Computation
by Voronoi Diagram,” CVGIP: Image Understanding, vol. 55, no. 3,
pp. 329-338, 1992.

[9] A. Brennecke and T. Isenberg, “3D Shape Matching Using
Skeleton Graphs,” Proc. Simulation and Visualization Conf.
(SimVis ’04), pp. 299-310, 2004.

[10] J.-H. Chuang, C.-H. Tsai, and M.-C. Ko, “Skeletonization of
Three-Dimensional Object Using Generalized Potential Field,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1241-1251, Nov. 2000.

[11] N.D. Cornea and P. Min, “Curve-Skeleton Properties, Applica-
tions, and Algorithms,” IEEE Trans. Visualization and Computer
Graphics, vol. 13, no. 3, pp. 530-548, May/June 2007.

[12] N.D. Cornea, D. Silver, and P. Min, “Curve-Skeleton Applica-
tions,” Proc. IEEE Visualization Conf. (VIS ’05), p. 13, 2005.

[13] N.D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian,
“Computing Hierarchical Curve-Skeletons of 3D Objects,” The
Visual Computer, vol. 21, no. 11, pp. 945-955, 2005.

[14] T.K. Dey and J. Sun, “Defining and Computing Curve-Skeletons
with Medial Geodesic Function,” Proc. Symp. Geometry Processing,
pp. 143-152, 2006.

[15] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological
Persistence and Simplification,” Proc. 41st Ann. Symp. Foundations
of Computer Science (FOCS ’00), p. 454, 2000.

[16] S. Fang and H. Chen, “Hardware Accelerated Voxelization,”
Computers and Graphics, vol. 24, no. 3, pp. 433-442, 2000.

[17] N. Gagvani and D. Silver, “Parameter-Controlled Volume Thin-
ning,” CVGIP: Graphical Models and Image Processing, vol. 61, no. 3,
pp. 149-164, 1999.

[18] N. Gagvani and D. Silver, “Animating Volumetric Models,”
Graphical Models, vol. 63, no. 6, pp. 443-458, 2001.

[19] T. He, L. Hong, D. Chen, and Z. Liang, “Reliable Path for
Virtual Endoscopy: Ensuring Complete Examination of Human
Organs,” IEEE Trans. Visualization and Computer Graphics, vol. 7,
no. 4, pp. 333-342, Oct.-Dec. 2001.

[20] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He, “Virtual
Voyage: Interactive Navigation in the Human Colon,” Proc.
SIGGRAPH ’97, pp. 27-34, 1997.

[21] A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, and
M.E. GrLoller, “CPR: Curved Planar Reformation,” Proc. IEEE
Visualization Conf. (VIS ’02), pp. 37-44, 2002.

[22] A. Kanitsar, R. Wegenkittl, D. Fleischmann, and M.E. GrLoller,
“Advanced Curved Planar Reformation: Flattening of Vascular
Structures,” Proc. IEEE Visualization Conf. (VIS ’03), pp. 43-50,
Oct. 2003.

[23] S. Katz and A. Tal, “Hierarchical Mesh Decomposition Using
Fuzzy Clustering and Cuts,” Proc. SIGGRAPH ’03, pp. 954-961,
2003.

[24] F. Lazarus and A. Verroust, “Level Set Diagrams of Polyhedral
Objects,” Proc. Fifth ACM Symp. Solid Modeling and Applications
(SMA ’99), pp. 130-140, 1999.

[25] T.-Y. Lee, C.-H. Lin, H.-K. Chu, Y.-S. Wang, S.-W. Yen, and
C.-R. Tsai, “Mesh Pose-Editing Using Examples,” Computer
Animation Virtual Worlds (COMPUTER ANIMATION and SOCIAL
AGENTS ’07), vol. 18, nos. 4-5, pp. 235-245, 2007.

[26] T.-Y. Lee, Y.-S. Wang, and T.-G. Chen, “Segmenting a Deforming
Mesh into Near-Rigid Components,” The Visual Computer, Proc.
Pacific Conf. Computer Graphics and Applications (Pacific
Graphics ’06), vol. 22, no. 9, pp. 729-739, 2006.

[27] F.F. Leymarie, “Three-Dimensional Shape Representation via
Shock Flows,” PhD dissertation, Division of Eng., Brown Univ.,
May 2003.

[28] X. Li, T.W. Toon, and Z. Huang, “Decomposing Polygon Meshes
for Interactive Applications,” Proc. Symp. Interactive 3D Graphics
(I3D ’01), pp. 35-42, 2001.

[29] C.-H. Lin and T.-Y. Lee, “Metamorphosis of 3D Polyhedral
Models Using Progressive Connectivity Transformations,” IEEE
Trans. Visualization and Computer Graphics, vol. 11, no. 1, pp. 2-12,
Jan./Feb. 2005.

[30] P.-C. Liu, F.-C. Wu, W.-C. Ma, R.-H. Liang, and M. Ouhyoung,
“Automatic Animation Skeleton Construction Using Repulsive
Force Field,” Proc. 11th Pacific Conf. Computer Graphics and
Applications (PG ’03), p. 409, 2003.

[31] C.M. Ma and M. Sonka, “A Fully Parallel 3D Thinning Algorithm
and Its Applications,” Computer Vision and Image Understanding,
vol. 64, no. 3, pp. 420-433, 1996.

WANG AND LEE: CURVE-SKELETON EXTRACTION USING ITERATIVE LEAST SQUARES OPTIMIZATION 935

Fig. 16. In this figure, there are two volumetric models with different voxel sizes. (a) The distances between the fingers are smaller than the voxel

size; the represented fingers are all connected together, and thus, only one branch is extracted from the four fingers. (b) The voxel size is small

enough to separate the fingers; thus, the finger branches can be extracted. (a) Voxel size ¼ 0:05. (b) Voxel size ¼ 0:005.

[32] K. Palágyi and A. Kuba, “A Parallel 3D 12-Subiteration Thinning
Algorithm,” Graphical Models and Image Processing, vol. 61, no. 4,
pp. 199-221, 1999.

[33] S.M. Pizer, D.S. Fritsch, P.A. Yushkevich, V.E. Johnson, and
E.L. Chaney, “Segmentation, Registration and Measurement of
Shape Variation via Image Object Shape,” IEEE Trans. Medical
Imaging, vol. 18, no. 10, pp. 851-865, 1999.

[34] T.B. Sebastian, P.N. Klein, and B.B. Kimia, “Shock-Based
Indexing into Large Shape Databases,” LNCS, vol. 2352,
pp. 731-746, 2002.

[35] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson, “Skeleton
Based Shape Matching and Retrieval,” Proc. Shape Modeling Int’l
(SMI ’03), p. 130, 2003.

[36] S. Takahashi, T. Ikeda, Y. Shinagawa, T.L. Kunii, and M. Ueda,
“Algorithms for Extracting Correct Critical Points and Construct-
ing Topological Graphs from Discrete Geographical Elevation
Data,” Computer Graphics Forum, vol. 14, no. 3, pp. 181-192, 1995.

[37] J. Tierny, J.-P. Vandeborre, and M. Daoudi, “3D Mesh Skeleton
Extraction Using Topological and Geometrical Analyses,” Proc.
14th Pacific Conf. Computer Graphics and Applications (PG ’06),
pp. 85-94, 2006.

[38] S. Toledo, D. Chen, and V. Rotkin, TAUCS: A Library of Sparse
Linear Solvers Version 2.2. Tel-Aviv Univ., http://www.tau.ac.il/
stoledo/taucs/, Sept. 2003.

[39] L. Wade and R.E. Parent, “Automated Generation of Control
Skeletons for Use in Animation,” The Visual Computer, vol. 18,
no. 2, pp. 97-110, 2002.

[40] M. Wan, F. Dachille, and A. Kaufman, “Distance-Field Based
Skeletons for Virtual Navigation,” Proc. IEEE Visualization Conf.
(VIS ’01), pp. 239-246, 2001.

[41] F.-C. Wu, W.-C. Ma, R.-H. Liang, B.-Y. Chen, and M. Ouhyoung,
“Domain Connected Graph: The Skeleton of a Closed 3D Shape
for Animation,” The Visual Computer, vol. 22, no. 2, pp. 117-135,
2006.

Yu-Shuen Wang received the BS degree from
the National Cheng Kung University, Tainan,
Taiwan, R.O.C., in 2004. He is currently a PhD
candidate in the Department of Computer
Science and Information Engineering, National
Cheng Kung University. His research interests
include computer graphics, mesh segmentation,
skeletonization, and computer animation.

Tong-Yee Lee received the PhD degree in
computer engineering from Washington State
University, Pullman, in May 1995. He is currently
a professor in the Department of Computer
Science and Information Engineering, National
Cheng-Kung University, Tainan, Taiwan. His
current research interests include computer
graphics, nonphotorealistic rendering, image-
based rendering, visualization, virtual reality,
surgical simulation, medical visualization and

medical system, and distributed and collaborative virtual environments.
He is an associate editor for the IEEE Transactions on Information
Technology in Biomedicine from 2007 to 2010. He is also on the editorial
advisory board of the Journal Recent Patents on Engineering, an editor
of the Journal of Information Science and Engineering, and a region
editor of the Journal of Software Engineering. He served as a member of
the international program committees of several conferences including
IEEE Visualization, Pacific Graphics, the IEEE Pacific Visualization
Symposium, the IEEE-EMBS International Conference on Information
Technology and Applications in Biomedicine, the International Con-
ference on Artificial Reality and Telexistence, and the International
Conference in Central Europe on Computer Graphics, Visualization, and
Computer Vision. He leads the Computer Graphics Group, Visual
System Laboratory, National Cheng-Kung University (http://graphics.
csie.ncku.edu.tw/). He is a member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

936 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

