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Abstract
We introduce a deep learning-driven framework for creating an adaptably applicable impor-
tance map (A2R-Map) that can be integrated with existing image and video retargeting
operators. A conventional retargeting algorithm uses a heuristic approach to seek an off-
the-self algorithm used into their retargeting system. The extracted importance map of the
image does not match the characteristics of the input image; therefore, it affects the retarget-
ing results and limits the performance of the retargeting method. Our designed framework
attempts to minimize the artifacts/distortions caused by inappropriate energy, e.g., the shrunk
phenomenon in warping-based results and carving-through-object distortion in the seam
carving-based approach. Our proposed framework focuses on capturing sensitive distortion
regions and activating their energy to solve this challenge. We verify the effectiveness of our
proposed scheme by plugging it in three typical retargeting methods: seam carving-based,
warping-based for image, and video retargeting. Extensive experiments and evaluations are
conducted on two widely used databases. On the one hand, A2R-Map significantly reduces
the time of importance map generation in retargeting systems to ∼ 9 times compared to
the baseline saliency map. On the other hand, our A2R-Map achieves improvement over the
baselinemethods with an average of 11% and 9% in terms of image and video quality, respec-
tively. The experimental results and evaluations demonstrate that our strategy for A2R-Map
substantially outperforms the previous works and significantly boosts the visual quality of
video/image retargeting.
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1 Introduction

Image and video have long been the widespread media forms in our life. The development
of media platforms (e.g., Facebook Reel, TikTok, Instagram, Youtube, etc.) along with the
evolution of heterogeneous devices requires the media forms to be well displayed in different
resolutions and aspect ratios. This impulse has made media retargeting a more active and
attractive research topic in computer vision and computer graphics during the last decade.

This problem has been explored. The conventional content-aware image/video retargeting
methods [1–7] rely on the visual information of the image/video to define the importance
of the image/video, which should be preserved after retargeting. These methods obtain the
content analysis via existing techniques, e.g., saliency map, gradient map, depth map, struc-
ture map, shadow map, etc. The result after this analysis is called an “importance map”, in
which an importance value is assigned for each pixel. The important regions of the image
must have a higher importance value to be effectively preserved in retargeting process [8].
Usually, a particular method uses a heuristic to seek an approach that could be integrated into
their retargeting system. However, these methods are not originally designed for retargeting.
The extracted importance map of the image does not match the characteristics of the input
image; therefore, it affects the retargeting results and limits the performance of the retar-
geting method [8]. The latest deep learning methods [9–12] can improve the performance
in image retargeting, especially in extracting the importance map of the image. However, it
requires equipment with high computing power and comprehensive datasets. Unfortunately,
ideal retargeting results are limited and not available. These inadvertently become challenges
in this research domain. In addition, each category of retargeting technique has its advantages
and limitations. Warping-based methods can produce smoother results without loss of image
information, but the shape of the objects of the image is shrunk. Since the seam carving algo-
rithm alone could not perform well, there was a tendency to combine it with other operators
such as scaling [8].

In this paper, we propose a framework to address the above challenges.We aim to generate
an energy map that could be adaptable to seam carving and warping operators. Our designed
framework attempts to minimize the artifacts/distortions caused by inappropriate energy, as
we visualize in Fig. 1. The proposed framework pays attention to capturing sensitive-to-
distortion regions and activating their energy. Our framework consists of an online learning
and an offline refinement stage. The online stage learns the features of the input image to
define the region of themain object and predict energy for the pixels belonging to such regions.
We achieve this by proposing a neural network model, Triplet-Layer Features Sharing (TFS-

Fig. 1 Our proposed framework resolves the shrinking phenomenon in the warping-based method and carving
distortion in the seam carving-based method
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Net). The idea of TFS-Net is that we utilize the annotation of salient object detection to
explore the important region in an image, which can prevent us from distorting these regions.
In the refinement stage, we aim to detect the wrongly predicted energy in the online stage.We
activate the important information in the background, along with correcting the energy. This
refinement produces a fine and proper energy map, which saves the retargeting results from
distortion in the less important regions in the cases where the image content is dense. With
this strategy, our energy map enables retargeting methods to face various images. To validate
the effectiveness of our scheme, we plug our energy map into the seam carving and warping
operators. We test it on image and video retargeting with various input images/videos. More
ideal results are obtained. We also compare our results to prior methods in retargeting and
importance map generation.

The contributions of our work could be included in the following aspects:

• We develop a framework that effectively defines important maps (A2R-Map) in image
and video retargeting applications.

• Our proposed scheme could be adaptable to seam carving and warping-based retargeting
systems.

• Our A2R-Map substantially outperforms baseline methods, particularly achieving
approximately 11% and 9% improvement over them in terms of image and video retar-
geting quality, respectively.

• The ideal retargeting results obtained by our system enable researchers in seeking the
dataset for this research domain.

We organize the remainder of this paper as follows. In Section 2, we review the prior
works that are related to our current research. In Section 3, the detail of our proposed frame-
work is described. In Section 4, our experimental results and evaluations are presented. The
conclusion and our future work are discussed in the last section.

2 Related work

The conventional techniques for Content-Aware Image Retargeting (CAIR) are probably
categorized into discrete and continuous methods [8, 13]. Most of the resizing systems in the
two categories share the mutual process regarding the importance map generation. That is,
they all analyze the content of the input image to define the critical regions in advance, which
are preserved in the second step of the CAIR procedure. Each CAIR scheme may integrate
with a different importance map extraction method. In Table 1, we summarize the techniques
that the typical CAIR schemes, including cropping, seam carving, warping, and recent deep
learning-based models, use in their framework. For more works, readers are encouraged to
refer the survey article [8].

Cropping, a naive technique used in resizing an image, identifies the image’s most impor-
tant content to select the cropping window’s location. Researchers in this category define the
cropping window in various ways, such as semantic information [1], Support VectorMachine
[14], or the gaze of a user looking [15]. For cropping technique, retargeted results are not
distorted or damaged the structure. Yet, they can only have one cropping window, in the
events that images have several salient and important objects, losing of information outside
the cropping window is a negative side of such cropping schemes.

In the seam carving (SC) algorithm, the importance map plays an essential role since the
SC seeks to find low-energy seams in the image. The pure SC algorithm [3] defines pixel-
energy using the image gradient. Since the gradient map focuses on the object’s edge, it leads
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Table 1 Overview of existing CAIR methodologies

Methods References Technique of importance map

Cropping Suh et al. [1], Li and Ling [14], San-
tella et al. [15]

face information [1], SVM [14], gaze
of users [15]

Seam Carving Avidan andShamir [3],Guo et al. [16],
Shen et al. [17], Wu et al. [18], Choi
and Kim [19], Battiato et al. [20]

gradient map [3], saliency + gradient
map [16], depthmap [17, 18], gradient
vector flow [20], gradient + saliency +
depth + structure maps [19, 21]

Warping Zhang et al. [22],Guo et al. [23],Wang
et al. [24], Zhang et al. [25], Jin et
al. [26], Niu et al. [27], Lin et al. [6],
Hu et al. [28], Panozzo et al. [29], Tan
et al. [30], Kim et al. [31], Kim et
al. [32]

distortion map [22], human body
extraction [23], saliency map [6, 23–
32]

Deep learning approaches Liu et al. [33], Guo et al. [34], Song
et al. [35], Lin et al. [12], Wang et
al. [36], Tan et al. [10], Ahmadi et
al. [37], Cho et al. [9], Zhou et al. [38]

Convolution Neural Network

to distortion passing through the objects. Inspired by this, several works [16–19, 21, 39, 40]
subsequently investigate various ways to address the drawback of the gradient map. They
could be saliencymap, depthmap, structure map, or combine thesemaps, as outlined in Table
1. Although these solutions help improve SC’s performance comparing to the baseline [3],
they still have significant downfalls. The images with background color is close to the color
of important regions, foreground with multiple objects, or dense of background content are
challenging to them.

CAIR methods in the category of the warping-based attempt to minimize the deformation
of regions of high visual importance, while higher deformation is allowed in regions of low
importance [8]. Hence, a proper content analysis method integrated into such a warping
scheme also plays an vital manner. Each work in the warping-based approach utilizes a
different way to construct the importance map of the image. Along with distortion map used
in the system of Zhang et al. [22], the saliency map is the most used technique, which is used
in most of the warping schemes [6, 23–32]. Nonetheless, these importance map generation
techniques are not designed for retargeting application. This leads to linear changes in the
shape of resizing results, which are the common drawbacks in these warping-based systems.

Recently, deep learning-based technologies are investigated to explore retargeting domain
[9, 10, 12, 33–38]. These state-of-the-art approaches focus on two sides. They utilize Con-
volutional Neural Network (CNN) to define the importance map and then feed this resulting
map to a retargeting operator [35, 37]. On the other side, they develop a model based on
the existing retargeting concept, e.g., warping [9, 10], seam carving [12], and multi-operator
[38]. The advances in deep-learning techniques are now able to boost the research of analyz-
ing multimedia content [41]. Several applications benefit from this evolution, for example,
classification [42], and object detection [43]. Inspired by these and the observation of the
drawbacks mentioned above in image/video retargeting applications, in this work, we take
advantage of the deep-learning technique to boost the performance of the existing retargeting
methods. In contrast to prior work in the retargeting domain, our approach is to generate an
energy map that could be adaptable for a particular retargeting method. We consider both
background and foreground information in the importance map generation, which is efficient

123



Multimedia Tools and Applications

in avoiding carving distortion in the seam carving-based approach and shrinking phenomenon
in the warping-based system.

3 Methodology

3.1 System overview

Our proposed framework is illustrated in Fig. 2, which consists of an online and offline stages.
The system gets as input a color image I and we aim to generate the corresponding Adapt-
to-Retarget importance map (A2R-Map). We also call A2R-Map in the term “energy map”
in our article. The online stage is used to estimate the energy of the pixels that belong to the
most important region in I. For this stage, we propose a network called Triplet-Layer Feature
Sharing (TFS-Net). We train TFS-Net to automatically produce an energy map, denoted as
OMap. The offline stage is a refinement manner. We first extract edge features in the image
I to obtain an energy map, denoted as BMap. Thereafter, we formulate OMap and BMap to
define the final A2R-Map.

3.2 OMap generation

We design the TFS-Net to shoulder the task of OMap generation. Our TFS-Net is configured
with two modules, a feature extractor and a feature sharing session, as illustrated in Fig. 2.
As named, the first module is to extract the features in the input image. For this purpose, we
use VGG-19 [44] as a backbone. The pre-trained VGG-19 is widely used as the backbone
network in many applications, particularly for silent object detection (SOD) tasks. Therefore,
it is reliable to be considered a good feature extractor. Furthermore, VGG-19 has been trained
on the large-scale dataset. With this strategy, we can remove the burden of training for this
process. It’sworth noting thatVGG-19 is originally designed for image classification,which is
structured by feature extraction and classification parts. To use it as a backbone, we remove

Fig. 2 Our proposed framework of A2R-Map generation
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the second part and only use the first part for feature extraction purposes. In the second
module, the so-called feature sharing session (TFS), we propose to learn feature correlations
extracted from the backbone and formulate them to estimate pixel energy. We note here that
the feature extraction of VGG-19 is designed with 5 layers, structured asConvolution + ReLu
→ Max-pooling, and finalized by 3 layers of Fully connected + Relu. The last 3 layers are
used to link the extracted features to the output, rather not for extracting feature purpose.
Hence, we only use the first 5 layers in this backbone. Given an input color image I in size
of H × W × 3, where H and W are the height and width, we can obtain five-layer features
{Xi |i = 1, . . . , 5} with sizes [ H

2i
, W
2i

] from the backbone network. Feature X1,X2, and X3

with larger sizes are low-level features with rich object information,X4 andX5 are high-level
features with rich semantic information. Besides, feature X1 brings much computation cost
and slight performance improvement. Therefore, to take the advantage of the features of the
layers, we use the last three-layer features for subsequent processing.

Once the image I is encoded by the backbone, a triplet of the last three-layer features
(X3,X4,X5) is fed to the TFS session. We do not use the features in the first two layers
since they are relatively coarse. The deeper layers capture more high-level features, which
are more beneficial for the resultant energy map in challenging complex image content. The
TFS shoulders the task of learning the feature representation of the input I, finding their
correlation to predict the proper energy of the pixels belonging to the important region of I.
To achieve this, we embed into TFS anAdjacent-layer Features Sharing (AFS) protocol. To be
more specific, AFS is designed to let any two adjacent layers share their features. Features of
each layer are first convoluted with a distinct number of filters. They are then concatenated to
yield the product feature maps, denoted by Sl→u . Mathematically, this process is formulated
as:

Sl→u = F
(
C3(ζ(Xl), k),C

3(Xu, r)
)
, (1)

where F is the concatenation; C3 is operated by a convolution with the kernel size of 3 × 3
operator. We use a 3 × 3 kernel since it has a smaller receptive field compared to larger
kernels. This means it focuses on capturing more local features, which can be helpful for
detecting fine details and edges in the image. Plus, it requires less computation cost. k and r
denote the number of filters of lower Xl and upper Xu layers, respectively. And ζ indicates
the up-sample operator.

As we illustrate in Fig. 2, applying AFS protocol on each pair of adjacent layers yields a
product feature maps Si→i−1. The sharing product at layer i is recursively defined as:

Si→i−1 =
{

γ
(
Si+1→i ,Xi−1

)
if i < 5

C1(Xi ) if i = 5
, (2)

where γ (.) is the AFS protocol expressed in (1); C1 is a convolution 1 × 1. Thereafter, the
products defined by (2) are fused together to construct the final tensor Tc. We finally pass Tc
through a 1 × 1 convolution to map it into the ground truth with an activation function. In
the training process, we use a sigmoid activation function to calculate the probability as an
output that has a value in the range of 0 and 1. All the parameters in our network are learned
by minimizing the loss function, which is computed by the errors between the probability
map and ground truth. Given a ground truth Sg(Sg ∈ 0, 1h×w), which is corresponding to
the input image I (H × W × C), stochastic gradient descent is employed to minimize the
loss of training to predict visual information probability:

L(Sg,Sp) = −yi × log(ŷi ) + (1 − yi ) × log(1 − ŷi ), (3)
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where Sp is the estimated energy map produced during the training; yi ∈ Sg and ŷi ∈ Sp .
After training TFS-Net with the loss function (3), pixels in the input image I are predicted
as important degree by being assigned an energy value ranging from [0, . . . , 1]. The higher
value indicates the pixel belongs to such an important region. We call this estimated result an
OMap, which is then further formulated in the following step to define the final importance
map.

3.3 A2R-map generation

The resultant energy map obtained by the TFS-Net, i.e., OMap, is sufficient to improve the
performance of seam carving-based and warping-based methods in the game of retargeting.
This effectiveness is discussed by the ablated results in Section 4.2. Nevertheless, retargeting
is a particular application in which a proper definition of pixel-wise energy plays an essential
role [8]. Since the benchmark dataset of such an energy map is not available, we utilize
the annotation data of salient-object-detection to train our TFS-Net. As a result, TFS-Net
focuses on the region of the labeled objects and may skip the objects belonging to the back-
ground. Such a resultant energy map could be good for images that are with simple content,
i.e., one object in the foreground and the background is not complex. In the cases that the
input images are with dense backgrounds, this may lead to loss the semantics of the retar-
geted image, i.e., some significant pixels are invisible and distorting artifacts occur at these
regions. To overcome these challenges, we further do a refinement based on the initial energy
obtained from TFS-Net (i.e., the OMap). The pseudo-code of this strategy is presented in
Algorithm 1.

Algorithm 1 Algorithm of A2R-Map generation.
Input: Color image I
Output: Energy map A2R-Map

1: Train TFS-Net
2: OMap ← TFS-Net(I)

3: BMap ←
√
g2x (Bx ,I) + g2y(By ,I)

4: Put the grid 8 × 8 on OMap and BMap
5: W = {NULL}
6: for each pair (wOMap

i , w
BMap
i ) do

7: �i ←
√∑n

k=1

∣∣wB
i − wO

i

∣∣
8: if �i > η then

9: Add w
OMap
i toW

10: end if
11: end for
12: for each wi ∈ W do
13: if d

(
pO (i, j), pB (i, j)

)
> 0 then

14: A2R-Map(i, j) = BMap(i, j)
15: if d

(
pO (i, j), pB (i, j)

)
< 0 then

16: A2R-Map(i, j) = OMap(i, j)
17: end if
18: end if
19: end for
20: Return the energy map A2R-Map.
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To begin, we make the edge features of input image I to be visible. An energy map of
this manner is accordingly produced, denoted as BMap, which can be formulated as:

BMap =
√
g2x

(
Bx , I

) + g2y
(
By, I

)
, (4)

where Bx , By are the Sobel kernel [45] of horizontal and vertical, respectively. And gx , gy
are the two images which at each point contain the horizontal and vertical derivative approxi-
mations respectively. Thereafter, we base on BMap to adjust the energy in OMap. The reason
is that, with (4), we make the edge pixels visible and they are assigned high energy values.
Hence, we can treat BMap as a standard map to allocate the “object” boundary. “Object”
here includes both the main objects in the foreground and the objects in the background. Our
adjustment on OMap focuses on two aspects: (1) detecting the wrongly estimated energy in
OMap, and (2) activating the important information in the background that could bemissed in
OMap. It is worth pointing out that this refining strategy is different from combining the two
maps. Combining leads to the wrongly predicted energy in OMap still exists. This eventually
affects the content structure of the retargeting results.

Given two energy images OMap and Bmap corresponding to the input image I, we
simultaneously slide a window w on the two maps. The size of w is set to 8 × 8. A smaller
w leads to higher computation cost, and content in small w not is sufficient to define the
inconsistency. Meanwhile, a larger w spends less cost, but reduces the accuracy of BMap.
Weprimarily test ondifferent sizes ofw and conclude thatw-size in rangeof 8 to 12guarantees
performance of BMap to be stable with arbitrary image content. All of experiments in this
article, we use w of 8 × 8. Let us denote wO

i and wB
i as the window capturing OMap and

BMap at the iteration i . We then calculate the distance of pairwise windows as:

�i =
√√√√

n∑
k=1

∣∣wB
i − wO

i

∣∣, (5)

with n is the total pixel in wi . A large �i reveals the “inconsistency” between wB
i and wO

i .
“Inconsistency” here refers to the wrongly predicted energy of pixels inwO

i . For example, we
can see the visualization of this phenomenon in Fig. 3, highlighted in green and red squares.
It is observed that there is significant difference between them. At first glance, OMap seems
to be good. However, zoom-in each window shows a significant inconsistency in terms of
the spatial location of the input content and predicted energy. This phenomenon eventually
affects the structure of retargeting results.

We define the set of patches that encompass of the wrongly-predicted-energy pixels as:

W = {wk ∈ OMap s.t. �k > η}, (6)

Fig. 3 Samples of inconsistent pairs
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with η is the threshold we set in our experiment, i.e., η = 50. We note here that the threshold
η linearly varies with the size of window w. As we mentioned above on the stable range of
w, the range of η is recommended in range of [50, . . . , 55]. Once W is found, we define
A2R-Map as:

A2R-Map(i, j) =
{
BMap(i, j) if d(pO(i, j), pB(i, j)) > 0

OMap(i, j) if d(pO(i, j), pB(i, j)) < 0
, (7)

here pO , pB are the pixels belonging to OMap and BMap, respectively. We note here that
the pixel-wise distance d(pO , pB) is used in this equation to define which pixel could be
used to update the corresponding pixel in A2R-Map.

Our above refinement phase encourages the predicted energy in OMap to be consistent
with the content in the input I, see Fig. 3(e). Besides, it makes the essential information
in the background to be visible. Therefore, our A2R-Map can facilitate seam carving from
carving wrong energy and saving the warping results from the shrinking effect.

4 Experimental results

In this section, we first present our experimental settings. In Section 4.2, we analyze how
our A2R-Map affects the image and video retargeting performances and discussion via the
ablated results. Finally, we show the visual comparisons and apply some evaluating indicators
to evaluate the performance.

4.1 Implementation details

We implemented our system on the PC with Intel Core i7 CPU, 16GB RAM, and NVIDIA
GeForce GTX1070 GPU. The language is used in our importance map generation is Python
3.6. To generate retargeting results, the seam carving operator is implemented in Python, and
warping-based is computed with C++ programming language in Visual Studio 2015. In our
TFS-Net network,we useMSRA10Kdataset [46],which is used for saliency detection, as our
training data. This dataset consists of 10000 images with a diversity of the content structure
of natural scenes. The dataset also contains manually annotated ground-truth saliency. In
terms of parameters settings for each approach used in our comparisons and evaluations, we
summarize in Table 2.

Table 2 Description of parameters in compared methods

Method Description

Baseline warping for image [6] Importance map: Saliency [47] + segmentation [48]

Baseline warping for video [7] Importance map: Saliency [47] + segmentation [48]

Baseline SC [3] Importance map: gradient energy

Patel et al. [49] The same parameter as the source paper [49]

RC map [50] The same parameter as source paper [50]

NIF [16] The same parameter as source paper [16]

BASNet [51], DIS [52], DFI [53] The same parameter as source papers
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4.2 Image and video retargeting with A2R-map

Given an image/video As , arbitrary image/video retargeting methods R aim to generate a
target image/video At with the following function:

At = R
(
M(As),P

)
, (8)

where P denotes the resizing operator of R; M is an off-the-shelf method that R uses to
define the importance in the input As . As we discuss in the aforementioned section, we aim
to generate an energy map that could be adaptable to an arbitrary resizing method R and
eliminate the artifacts caused by inappropriate energy of M. In other words, the method
of importance map generation M is alternated by our A2R-Map in the methods R. In this
section, we verify the effectiveness of our proposedA2R-Map by plugging it into three typical
retargeting methods: seam carving-based, warping-based for image, and video retargeting.

Seam carving-based We compare the ablated results when integrating seam carving oper-
ator with gradient map, OMap, and A2R-Map in Fig. 4. As shown in this figure, integrating
the seam carving operator with different energy maps yields different results. Using gradient
maps results in deformed salient objects since these maps can only indicate high energy near
the edges of an object [16]. The result in (b) visualizes such distortion. In (c), we can see that
the OMap obtained by our TFS-Net demonstrates its benefit in overcoming the mentioned
phenomenon in (b). However, the wrongly predicted energy in the background pixels causes
obvious carving artifacts in the background. Thanks to the refinement of our approach, our
A2R-Map resolves these phenomena. The result in (d) reveals that A2R-Map serves a better
result compared with the two shown cases.

Warping-based Here we demonstrate the effectiveness of our A2R-Map in the warping-
based systems for image and video retargeting. We adopt [6] and [7] as the case study for
image and video retargeting, respectively. These two works are mentioned as good warping
schemes. Besides, the source codes are provided by the authors, thus they are reliable to
use and fair for comparisons. The problem in warping-based retargeting results is different
from those in the seam carving-based approaches, i.e., the results are shrunk. The reason is
that these warping schemes rely on the saliency map, adopted from Goferman et al. [47], to
estimate the moving factor of quad vertices. That is, the vertices with high saliency value are
assigned a small moving weight. And vice versa, they are assigned the same scaling weight.
As a result, in the case that the saliency value is not correct, the quad vertices tend to scale
linearly.

Figure 5 visualizes this phenomenon, and we further use the linear scale’s results in these
comparisons. For the image retargeting result (i.e., the first row), by observing the three

Fig. 4 Results of seam carving operator using different energy maps
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Fig. 5 A2R-Map with warping-based methods on image and video retargeting

results (c)-(e), we can see different energy maps yield different retargeting. At first glance,
the saliency map [47] could be a good partner to integrate with warping [6, 7]. However,
the shape of the car is not preserved well. This effect makes Lin’s results relatively close to
the linear scale. As in our prior discussion, OMap alone is sufficient to resolve the shrinking
issue in such a warping-based system. The result in (d) demonstrates this effectiveness.
Nevertheless, A2R-Map boosts the result more ideal, i.e., the shape of the car is quite similar
to those in the input image. It’s obvious to see that the result in (e) outperforms the ablated
results in (c) and (d). The second row further demonstrates the benefit of our A2R-Map in
terms of video retargeting. We can observe differences in the region highlighted in yellow.
The shape of the girl’s head is distorted significantly. Similar to the shown case of image
retargeting, OMap improves the problem occurring in (c) but is not good as A2R-Map’s
performance. The visualization for videos can be seen at this link1.

4.3 Our results and discussion

Here we give out more discussion on the capability of our A2R-Map. We test the images
with low retargetability. The data is obtained from [54]. We examine on two samples shown
in Fig. 6, one is with medium degree (i.e., retargetability: 0.57) and one is with a low score
(i.e., retargetability: 0.1). Figure 6 shows the plausible results generated by our system in this
manner. As shown in the figure, the shape of the main object (i.e., the clock) is distorted by
deformation in AAD [29] (Fig. 6(a)), and the important regions are cropped (i.e., the hand
and the mug in Fig. 6(b)). In contrast, these phenomena do not occur in our results. These
experiments imply that our method is tolerated low retargetability images. Furthermore, the
images with reflection symmetry are challenging when retargeted by seam carving operator
[49]. The authors in [49] propose a novel method to address this problem. Figure 7 visual-
izes the results when our A2R-Map competes with [49] on a sample containing reflection
symmetric objects. The yellow rectangles highlight the differences between results. In this
input image, the head of the zebra contains reflection symmetric attributes. In this regard,
[49] and our A2R-Map are successful in preserving such objects and are quite better than
the gradient map. However, other regions (e.g., the leg of the zebra or the background on the
top-left corner) are distorted in [49]’s result. The comparisons in Figs. 6 and 7 reveal that
our approach is effective with various challenging input images. This enables the existing
retargeting method to have more ideal results. Appealing results are also produced. Readers
can explore our project website2 for more experimental results, including image and video
retargeting.

1 http://graphics.csie.ncku.edu.tw/A2RMap/CompareVids.mp4
2 http://graphics.csie.ncku.edu.tw/A2RMap
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Fig. 6 Our A2R-Map challenges on the low retargetability images

Fig. 7 Comparison on symmetry image with Patel et al. [49]

Fig. 8 Our A2R-Map and RC map [50] on seam carving and warping operator
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Fig. 9 Our A2R-Map competes with SOTA SOD models

It’s worth hypothesizing that M in (8) is another saliency detection method. That is,
instead of plugging our A2R-Map in such video/image retargeting system R, the method
R can choose other M. To justify this hypothesis, we select four candidates, RC [50] and
three SOTA SODmodels BASNet [51], DFI [53] and DIS [52]. RC is a global contrast-based
saliency region detector introduced by Cheng et al. [50]. This method has been mentioned as
an efficient importance information generator in such a retargeting system [32]. Three opted
models are good salient object detection methods used to detect salient objects in many
applications. We plug these four methods in (8) and compare their retargeting results against
our A2R-Map. The visual results are exhibited in Figs. 8 and 9. The results demonstrate that
our A2R-Map outperforms in all cases. RC seems unsuitable for seam carving operators since
their result has considerable carving distortion. Forwarping operators, RC shows its adaptable
capability. However, RC still suffers the drawback of “linear-like” as we discussed above. In
terms of SOTA SOD models in Fig. 9, since these SOD methods are originally designed for
object detection, it makes sense to find that non-labeled-objects (i.e., the flowers) are carved.

4.4 Visual comparisons

To demonstrate that our approach advances prior work in retargeting, we compare it with
five methods. For a thorough and fair comparison, we divide this session into two groups,
seam carving-based approach and warping-based one. In the first group, three methods [16,
21, 35] are compared. The mutual point in these methods is that they attempt to produce an
importance map that could resolve the distortion in the seam carving operator. They approach
this problem differently, combining different image features [16, 21] or modeling a neural
network [35]. In terms of warping, two deep learning-based techniques investigated in recent
years [9, 10] are compared.

Figures 13, 12 and 14 demonstrate the comparisons in terms of seam carving operator. NIF
[16] considers texture information together with color information to construct an effective
energy map. To achieve this, Guo et al. [16] combine the gradient map and a saliency map.
However, in the cases that the background is more inhormogenous than the important areas,
their algorithm fails. Figure 13 visualizes such cases and their results. Also shown in this
figure, our energy map A2R-Map estimates the importance map better than NIF’s. As a
result, our retargeting result is quite better NIF’s result and without any distortion. In Fig. 12,
although [21] combine various image features to define the energy map for seam carving
operator, their performance in this example is not good as ours. For example, theyperformwell
in the region of the butterfly, the left and right side of the image, but some noticeable distortion
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on the body of the tree makes their retargeted result is not as ideal as ours. CarvingNet [35] is
mentioned as the earliest work that investigates a neural network to generate the importance
map to improve seam carving-based method. Figure 14 is the visual comparison between
our results and theirs. In this challenging case, i.e., the content in the input image is quite
complex, CarvingNet creates obvious distortion at the building and the tree (highlighted
in yellow rectangles). Meanwhile, our A2R-Map performs better, i.e., there does not exist
noticeable distortion and the shape of the heart-shaped balloon is not significantly scaled
down as in CarvingNet.

Figures 15 and 16 visualize the comparisons in terms of warping-based methods. As
shown in the results, both WSSDCNN [9] and Cycle-IR [10] share the same drawback of
preserving the structure of the input image in the warping session of their network. Their
results are good in the structure of the bird or the house, but the background contents are
damaged (see highlighted region in both cases). However, our results are quite better in this
competition. For more comparisons, readers are encouraged to explore the Appendix and our
project website.

4.5 Objective evaluation

To quantitatively evaluate our method’s performance, we first adopt two metrics, ARS [55]
and Sift-Flow [56]. ARS algorithm is a metric that evaluates the visual quality of retargeted
images by exploiting the local block changes with a visual importance pooling strategy. We
use this metric to evaluate the distortion degree of our results comparing to the corresponding
input image. For the Sift-flow,weuse it to estimate dense correspondence between the original
and retargeted images in term of image content preservation. In both metrics, the higher is
better. In our evaluation session, we use RetargetMe database [57] as the benchmark data.We
compare the two metrics on the results generated by five methods: SC + Gradient map, SC +
A2R-Map, Warp + Saliency map [47], Warp + A2R-Map, and Cycle-IR [10]. We note here
that the abbreviations SC and Warp refer to seam carving operator [3] and warping operator
[6]. The visual results of this session can be found in our project website. The analysis results
on two metrics are presented in Table 3. The analysis results reveal that our A2R-Map can
generate results with less distortion than other competitors. This advantage is demonstrated
by the higher ARS score, approximately 11% on average. In term of Sift-flow score, Cycle-
IR is higher than ours when our A2R-Map integrates with SC; but A2R-Map+Warp has a
relatively comparable effectiveness with Cycle-IR in this manner.

A part from above metrics, we further adopt the bidirectional similarity measure (BSM)
[58] to evaluate the quality of retargeted images and videos. Simakov et al. [58] investigate
BSM to describe the coherence and completeness between input and output images. It is
widely used for quantitative analysis retargeting results in several works. For this metric,
we conduct evaluations on two groups. On the first group, we use seam carving operator
integating with different ways for energy map generation. Three SOTA models BAS [51],
DFI [53], DIS [52], and our A2R-Map join in this competition. Given a pair of images

Table 3 Retargeting quality analysis

Warp A2R+Warp SC A2R+SC Cycle-IR
Metrics ARS Sift-flow ARS Sift-flow ARS Sift-flow ARS Sift-flow ARS Sift-flow

Avg. 0.82 0.64 0.92 0.69 0.77 0.61 0.85 0.72 0.89 0.79
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(As,At ), the source image As and the corresponding resized one At , the error of At over
As is expressed as:

BSM(As,At ) = 1

N

( ∑
p⊂At

min
q⊂At

δ(p, q) +
∑
q⊂As

min
p⊂As

δ(q, p)

)
, (9)

where N is the total patches on As and At ; δ(.) is defined by sum of squared distance of
two patches p and q . The lower BSM represents better retargeting quality. In this group,
we examine on two benchmark datasets, RetargetMe [57] and NRID [59], which consists
of 80 and 35 images, respectively. The analysis results are presented in Fig. 10-(a). We can
see that using the importance map generated by SOD models, e.g., BAS, DIS, and DFI,
yields relatively identical effect with gradient-based energy via the light differences in score.
Yet, SC combines with our A2R-Map serves better performance with lower BSM scores.
All of our competitors perform better on NRID dataset than on RetargetMe, this is contrast
to ours. However, our scores on two datasets lower than compared models. This analysis
reveals that using such an SOD model to define pixel energy in seam carving-based systems
is challenging. Averaging on two datasets, using our A2R-Map improves approximately 15%
comparing the usage of the alternatives in this analysis.

On the second group, we evaluate quality of retargeted videos. As the ground truth for
video retargeting is not available, we elaborate as follows. Given a video with n frames, we
have two sets: a set of the source video frames Ss = {As

i , . . . ,As
n} and the other is those in

retargeted form St = {At
i , . . . ,At

n}. For each pair of frames (As
i ,A

t
i ), we apply (9) to define

the error of frameAt
i over frameAs

i . Afterwards, we measure the error degree of a retargeted
video as:

Vbsm = 1

n

n∑
i=1

BSM(As
i ,A

t
i ). (10)

In this evaluation, we conducted on 9 videos (exhibited on our project website) that have
diverse content, e.g., single-moving object, multiple-moving objects, complex backgrounds,
or important content distributed in the entire frame. Figure 10-(b) presents the analysis result.
It’s can be seen that our A2R-Map boosts the quality of videos better than the conventional
warping system in all of 9 videos. The scores in videos “Driving” and “Dancing” are relatively
close to the comparedmethod.However, the average score of our opponent is 3.42,meanwhile
ours is 3.078 which is approximately 9% improvement of video retaregting quality.

Fig. 10 Analysis on BSM metric on image (a) and video (b)
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Table 4 Analysis on processing time on different resolutions of input images/video frames (Unit: second)

Resolutions Saliency map [47] Gradient map Our OMap A2R-Map

1024 × 813 40.17 1.25 0.72 3.49

720 × 480 23.52 0.86 0.69 1.52

4.6 Timing analysis

To analyze the processing time, we conducted all experiments on a PC with Intel Core i7
2.5GHz, 16GB RAM. The comparison on energy map generation process is presented in
Table 4. The saliency map [47] is implemented by Matlab, the gradient map, our OMap and
A2R-Map are implemented by Python 3.6. As reported, saliency map generation [47] takes
a huge computation time. Gradient map is faster than ours. However, the offset between our
timing and gradient map is not significant. This is a trace-off between the processing time
and the better quality results.

4.7 Limitations

Although our proposed A2R-Map substantially minimizes the distortions in prior retargeting
work, it is still not good in some cases when playing with the seam carving operator.We show
an example in Fig. 11. It is because of lacking the dataset we use to train, and the OMap is
not good in such cases. As a result, our calculation in the refinement manner is not efficient.
Yet, we can see that the results are still plausible with the warping operator.

5 Conclusions

This paper introduces a learning-based framework for importance map generation that is par-
ticularly useful in image and video retargeting applications. The core contribution of ourwork
is (1) the effectiveness in minimizing the distortion in seam carving operator and shrinking
phenomenon inmesh-basedwarping systems, and (2) enabling the existing resizing operators

Fig. 11 Our limitation
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to challenge various input content images. Our results and comparisons show that the pro-
posed approach substantially outperforms related methods. Furthermore, the experimental
results on the low retargetability images and challenging cases are the evidence that reveals
the effectiveness of our scheme in retargeting. In our future work, we plan to improve the
dataset to alleviate the limitations of this study. Furthermore, given A2R-Map’s impressive
capabilities in analyzing image and video content, there is potential for us to expand its usage
into exploring a novel image and video retargeting system. That is, utilizing A2R-Map to
analyze image/video content, then integrating with a diffusion-based technique for resizing
manner.

Appendix A: More comparisons

Apart from the comparisons with content-aware retargeting approaches, we further exhibit
our results competing with a semantic-aware retargeting approach [60] in Fig. 17. In this
figure, besides [60] (PM), we further show the results from other five retargeting methods:
seam carving (SC) [3] and its improved version (ISC) [61], patch-based warping (PW) [6],
saliency-based mesh parametrization (SMP) [23], multi-operator (MOR) [4]. These results
are obtained from [60]. We can observe that our result outperforms the compared results. If
the carving distortions occur in SC, ISC, and SMP, a linear-like phenomenon falls in PW,
MOR, and PM (e.g., the green door). Meanwhile, our result does not have such phenomena
and appears in a balanced structure compared to the input image. Figure 18 exhibits the
performance of our A2R-Map in terms of enlarging. In this experiment, we enlarge images
to 25% of width.

Fig. 12 Comparison with Multi-operator and Cui et al. [21]

Fig. 13 Left to right: input image, NIF energy map, SC + NIF, A2R-Map, SC + A2R-Map
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Fig. 14 Comparison with CarvingNet

Fig. 15 Comparison with WSSDCNN

Fig. 16 Comparison with Cycle-IR
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Fig. 17 Comparisons with content-aware and semantic-aware retargeting approaches

Fig. 18 Enlarging results. In each pair, left: input image, right: enlarged one

Appendix B: List of notations

Symbol Definition

I Input image
SC Seam carving operator
OMap The energy map generated by TFS-Net
BMap The energy map generated by (4)
A2R-Map The final importance map generated by our model
SOD Salient Object Detection
TFS-Net The network we proposed to generate OMap
TFS Feature Sharing Session module
AFS Adjacent-layer Feature Sharing module
X i Feature maps at layer i th

Xu Feature maps at upper layer
Xl Feature maps at lower layer
As The source image/video in general
At The target image/video As after retargeting process
P A certain resizing operator
R A retargeting system using operator P to resize As and outputAt

M An off-the-shelf method that R uses to define the importance in the inputAs
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