
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 1, JANUARY 2020 15
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Abstract—The vector graphics with gradient mesh can be
attributed to their compactness and scalability; however, they
tend to fall short when it comes to real-time editing due to a
lack of real-time rasterization and an efficient editing tool for
image details. In this paper, we encode global manipulation
geometries and local image details within a hybrid vector structure,
using parametric patches and detailed features for localized and
parallelized thin-plate spline interpolation in order to achieve
good compressibility, interactive expressibility, and editability.
The proposed system then automatically extracts an optimal set
of detailed color features while considering the compression ratio
of the image as well as reconstruction error and its characteristics
applicable to the preservation of structural and irregular saliency
of the image. The proposed real-time vector representation
makes it possible to construct an interactive editing system for
detail-maintained image magnification and color editing as well
as material replacement in cross mapping, without maintaining
spatial and temporal consistency while editing in a raster space.
Experiments demonstrate that our representation method is
superior to several state-of-the-art methods and as good as JPEG,
while providing real-time editability and preserving structural
and irregular saliency information.

Index Terms—Real-time vector graphics, hybrid vector
representation, scalability, real-time editability.
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I. INTRODUCTION

V ECTOR graphics with gradient mesh is used in a variety
of multimedia, thanks to its compactness and scalability,

however complicated image details tends to spend huge ren-
dering costs and manipulate less-than-intuitively for low-level
attributes. In this paper, we propose a hybrid vector representa-
tion in which color details are encoded locally in parametric
object patches to enable parallel kernel preparation and ras-
terization with the aim of faithfully preserving the structural
and textural content while enabling high-level editing in real
time. However, the traditional gradient mesh systems require an
enormous number of curves to faithfully represent photorealis-
tic images. Within this type of system, manual creation is highly
non-intuitive and editing is difficult. Numerous researchers have
sought to simplify and/or automate the construction of vector
graphics, such as [5], [7], [13], [15], [17]–[19], [24], [25], [27],
[32]; however, those methods require global solutions to par-
tial differential equations (PDE), boundary element problems,
and global illumination, which necessitate time-consuming pre-
computation and memory-hungry intermediate data structures.
Most of the representations listed above lack editing tools, such
as cross blending, texture transfer, and color manipulation. Aim
to this issue, Yi [38] proposed an editing interface via reference
images, but there is a lack of direct manipulation for gradient
mesh. Thin-Plate Spline (TPS) interpolation provides interpo-
lation that is “as-harmonic-as-possible”. TPS has been used in
geometric modeling [29] and computer vision [35] because it
provides direct control over derivative interpolation and helps
to maintain their smoothness, in particular smooth local min-
ima/maxima.

In this paper, we propose a hybrid vector representation of
parametric patches and detailed color features to enable preci-
sion editing and scalability. Parametric patches (see Fig. 1(a))
are used to represent object components to facilitate editing.
Color details are encoded as features (see Fig. 1(b)) to achieve
faithful rasterization using TPS interpolation based on the
methods proposed by Powell et al. [26] without the need to
link them into curves or obtain global solutions to PDEs. TPS
interpolation provides direct control over derivative interpola-
tion, while maintaining smoothness and obtaining smooth local
minima/maxima. Nonetheless, the problem of determining
color constraints and factorizing the color constrain matrix of
TPS. We therefore localize these color constraints into inde-
pendent patches to enable real-time parallel computation in the
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Fig. 1. This illustrates our vectorization of a raster image in (a) by encoding object segments as parametric patches marked in green curves in (a) and detailed
features as color constraints in (b). Rasterization in (c) employs a biharmonic interpolation of detailed features for scalability and compactness, and it can also
maintain editability with parametric patches to support various editing operations including color editing in (d) and cross mapping in (e).

construction of the TPS kernel, factorization, and rasterization.
Furthermore, our patch-based scheme repeatedly uses features
from neighbors and applies weighted averages across samples
of multiple patches in order to counter the effects of aliasing
and avoid blurring and ghost artifacts.

Real-time patch-wise TPS inversion and interpolation enables
several vector image editing operations, including image mag-
nification, color editing, and cross mapping (see Fig. 1(c), (d),
and (e)). This is achieved without any of the difficulties asso-
ciated with vectorization, while maintaining spatial and tempo-
ral consistency in the editing of images in a raster space. We
conducted a numerical comparison of rasterization results ob-
tained using two state-of-the-art vectorization algorithms [23],
[38], [40], JPEG, and the proposed system. Our results achieved
superior compressibility and scalability over the two vector rep-
resentations and performed well against JPEG. In a comparison
of magnification results using filter interpolation and super reso-
lution, the proposed algorithm achieved numerical performance
superior to those of JPEG and more pleasing results overall.

Our main contributions are as follows.
� We propose a novel hybrid vector representation of de-

tailed color features embedded in parametric patches for
localized GPU TPS rasterization to enhance compressibil-
ity and scalability, while enabling interactive editing in real
time. This representation is effective for real-time image
magnification, color editing, and material replacement in
cross mapping, without compromising complex structural
or textural details.

� We provide an optimal feature selection scheme using
gradient intensity histogram of an image to balance the
number of features and the reconstruction error based on
our proposed compression efficiency metric.

The rest of the paper is organized as follows: Section II
reviews those previous research done related to this work.
Section III overviews our vectorization and rendering pipeline.
Section IV gives the technical details of our vectorization
process. Section V describes our GPU-based TPS interpolation
scheme. Section VI details our experiments to determine the
used parameters. Section VII discusses possible applications of
image magnification, color editing, and cross mapping using
our method. Section VIII shows the results of our algorithm
and comparisons to other state-of-art methods. Section IX
concludes with a discussion of limitations and future works.

II. RELATED WORK

Mesh-based vectorization methods [4], [11], [22], [34] align
meshes with edges using Delaunay triangulation followed by
remeshing for encoding color information with linear interpo-
lation inside each primitive for rendering. Liao et al. [23] and
Zhou et al. [40] subdivided the originally rough meshes based
on the saliency of an image, wherein the color of vertices is de-
termined using an optimization process to achieve better render-
ing results. Bilinear interpolation inside primitives often results
in a loss of sharpness. The highly dense, complex meshes re-
quired for detailed regions, such as the eyebrow in Fig. 3, reduce
compressibility and make the process of editing non-intuitive
and non-interactive. Furthermore, the time-consuming nature of
remeshing makes it unsuitable for real-time applications. Thus,
we developed a feature selection process for the optimized ex-
traction of structural and textural details for TPS interpolation,
thereby improving compressibility, scalability, and expressibil-
ity, as well as editing in real time.

Patch-based vectorization methods [21], [31], [37], [38] en-
code color and geometric information in parametric patches to
facilitate editing and flexibility; however, they require a global
optimization process for the selection of embedded information.
Sun et al. [31] and Lai et al. [21] began with an initial mesh cre-
ated manually by artists, whereas Xia et al. [37] aligned their
initial triangular meshes with edges to avoid the need for manual
construction, while maintainingC0 continuity only across patch
boundaries. Unfortunately, obtaining highly-detailed images us-
ing these methods requires a high-density collection of patches,
which greatly reduces compressibility and greatly increases the
cost of pre-computing colors. These methods also make it dif-
ficult to conduct object-level manipulation in an intuitive or in-
teractive manner. Thus, we align a parametric patch with each
object to enable object-based editing, while embedding detailed
features in patches to enable scalability, compressibility, and
high rasterization quality. Furthermore, the application of TPS
interpolation in local patches maintains at least C1 continuity in
all surface patches, and avoids the need for global optimization
in preprocessing, thereby allowing editing in real time.

Curve-based vectorization methods [5], [7], [13], [15],
[17]–[19], [24], [25], [27], [32] use curves and lines as color
constraints to ensure smooth coloring and rasterization. Xie
et al. [39] was able to reduce the number of curves required
to achieve realistic results; however, their method still requires a
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Fig. 2. Input raster image and its corresponding labeling map of object segments. Our vectorization pipeline involves parametric patch construction, optimal
color feature extraction, patch-based feature grouping, TPS kernel construction, and rasterization using GPU-based TPS color interpolation. The red rectangle
presents the eyebrow under 4X magnification.

large number of curves to render highly-detailed objects, which
greatly increases memory usage. Determining the color con-
straints along the curve generally requires a complex filtering
mechanism [39] or global optimization [19] which are in turn
accelerated using multigrid PDE solvers [13], [17], [18], [24],
boundary element methods [7], [15], [25], [32], [33], or ray trac-
ing mechanisms [6], [27]. Complexity and memory usage in-
creases with the detail of intermediate structures. Furthermore,
mesh-free curve manipulation necessitates the reconstruction of
intermediate structures, greatly hindering object-based editing.
Conversely, our work uses color samples derived using a simple
selection mechanism to enable parallel TPS interpolation in local
patches which do not require global PDE solutions and decou-
ples the complexity of the intermediate data structure to facilitate
compression and scaling, while increasing the efficiency of ras-
terization. Furthermore, embedding within parametric patches
provides a global manipulation mechanism for interesting edit-
ing applications.

III. OVERVIEW

Fig. 2 presents our vectorization and rendering pipeline.
Users first provide a raster image and labeling map of inter-
esting object segments. The system locates the four corners of
the segments, computes the corresponding derivatives at these
corners, and constructs corresponding Hermite patches. Image
characteristics are analyzed based on its gradient distribution
histogram to select an initial set of detailed color features using
adaptive super-pixel and Canny operators. Feature selection is
optimally refined using Monte Carlo searching [30] with our
proposed compression efficiency heuristic aimed at balancing
reconstruction error against the compression ratio. Our system
embeds extracted features into Hermite patches, clusters them
into localized groups for evaluation, packs these groups with
neighboring features to construct TPS rasterization kernels of
equal size, and applies TPS interpolation to compute the color
of pixels in the group. Finally, the rasterization regions are
extended to provide suitable overlap. A weighted average is
applied to the overlapping groups to remove seams, i.e., improve
continuity. In applying magnification, color editing, and texture
transfers, the proposed system adjusts the color and location of
features and then repeats the TPS kernel construction, inversion

and rasterization process in order to generate results with
minimal distortion while enabling editing in real time.

IV. VECTORIZATION USING HYBRID STRUCTURE

The proposed algorithm maintains scalability and editabil-
ity by vectorizing a photorealistic image and its corresponding
labeling map to create a hybrid representation comprising para-
metric patches and detailed color features. Our vectorization
process involves parametric patch construction, detail feature
extraction, TPS inversion, and rasterization. The details of each
process are described in the following sections.

A. Mathematical Definition and Embedment

Parametric patches enable the intuitive editing of 2D im-
ages; therefore, we opted to parameterize object segments as
cubic Hermite patches in order to facilitate editability. This
work defines the position vector of a Hermite patch M (s, t)
where (s, t) are control parameters with 0 ≤ s ≤ M − 3 and
0 ≤ t ≤ N − 3, (M,N) are the number of control points spec-
ified by the users or computed automatically by our system, and
each control point Mi,j has four control vectors for a given
position, with derivatives along the s, t, and st directions de-
noted as M

p
i,j , M

s
i,j , M

t
i,j , and M

st
i,j . Given (s, t), the pro-

posed system first locates its corresponding sub-patch index,
(�s�, �t�) and in-patch parameter, (s̃, t̃) = (s− �s�, t− �t�, ).
This enables us to compute the location in each sub-patch as
M (s̃, t̃) = B(s̃)QB(t̃), where B(u) represents the set of the
basis functions as {2u3 − 3u2 + 1,−2u3 + 3u2,u3 − 2u2 + u,
and u3 − u2} where Q refers to the four control vectors of the
four control points for the sub-patch. It is easy to transform a
parametric space to a pixel space; however, no analytic solution
has been devised to allow transformations from a pixel space
to a parametric space. We use a 2D binary search process to
look for a good approximation of (s, t), when given (x, y) as
follows: The proposed system first uses the locations of control
points to locate the sub-patch containing the pixel. We com-
pute the pixel location of the middle parametric point, divide
the sub-patch into four quadrants and then identify the quadrant
in which (x, y) lies. The above two steps are repeated until the
error associated with the constructed surface is smaller than a
user-selected threshold, Tloc, or a selected number of iterations,
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Fig. 3. A parametric patch is constructed by identifying four corners: (a) computing the location and derivatives of M ×N control points; (b) create the Hermite
patch M (s, t); (c) sample detailed features at patch boundaries; (d) and rasterize the results. (e) We also constructed a faithful gradient mesh of very dense
primitives (f).

Nitr. All of the results in this work are based on the following:
Tloc = 0.001 andNitr = 8. The transformation process can also
be accelerated using a look-up table, albeit with a slight sacrifice
of memory resources.

B. Editable Parametric Patch Construction

The user identifies the desired object segments in the form
of a labeling map created semi-automatically using multi-label
graph-cut segmentation [10] with a few indicative multi-label
strokes. In other words, while the object has multiple con-
nected regions, the user needs to segment it properly into
multiple interconnected simple regions in order to generate
reasonable controlled patches. The system then generates the
corresponding parametric patches, as shown in Fig. 3. The
arbitrary minimum bounding box is first computed using the
four intersections of the diagonal axes and patch boundaries
as four corners. The intersections are used as end points to
separate boundary points into 4 sets of samples by which to
fit 4 cubic Hermite boundaries. A pair of boundary curves is
selected from the opposite sides with the longest lengths. For
each curve, we select M points with equal parameter spacing
and link the corresponding two points from both of the sides
to form M lines. The system then selects N points with an
equal Euler spacing along each line, which are denoted as
P i,j , where i is the index of the line and j is the point index
along the line. The system constructs M Hermite curves to fit
the set of samples of P i,0 . . . P i,N−1. Similarly, we sample
N points (with an equal parameter spacing) for each newly
constructed Hermite curve to be denoted as Qi,j , where i is the
index of the curve and j is the point index along the curve. The
system constructs N Hermite curves to fit the set of samples
of Qi,0 . . . Qi,M−1. Finally, we find the intersection of all
constructed Hermite curves to derive M ×N control points,
M

p
i,j , of the object patch, M (s, t). The derivatives in the s

and t directions are selected based on the derivative of the two
intersected Hermite curves, and the derivative in the st direction
is calculated using the Adini twist vector formulation [2] as
M

st
i,j = 0.5(M

s
i+1,j −M

s
i−1,j) + 0.5(M

t
i,j+1 −M

t
i,j−1) +

0.25(M i+1,j+1 −M i+1,j−1 +M i−1,j−1 −M i−1,j+1). The
above process works well with convex patches, however, the
intersections of non-convex patches, such as the ‘C’ shape,
are unsuitable for manipulation. Thus, all of the border points

Fig. 4. Parametric patches created using various labeling maps: (a) to (e) Bud-
dha, Face, Flower, Green jade, and Lena. The first column is the original raster
image, and second to fourth columns are parametric structures created using dif-
ferent labeling maps along with their corresponding reconstruction mean square
error and GPU-based TPS run times.

are assembled into groups by selecting connected points using
the Ramer-Douglas-Peucker (RDP) algorithm. The groups are
fit into poly-lines and linked as a polygon. If the polygon is
convex, then we use the above algorithm to find the four corners.
Otherwise, we decompose the polygon into a set of connected
convex polygons using optimal convex decomposition [8],
find the four corners of each polygon, and remove the corner
pairs sharing the same position. The remaining points are our
four corners. This process is repeated for all object patches of
interest.

Different labelling maps result in different parametric struc-
tures, as shown in Fig. 4. The fact that the proposed color re-
construction scheme and localized patch-overlapping seam re-
moval scheme depend only on detailed features (Sections IV-C
and VI-C) means that different label maps have little impact on
reconstruction error. However, the size of the patch can have a
tremendous impact on the number of features that are included,
which in turn has a dramatic impact on TPS reconstruction effi-
ciency, as discussed in Section V-B.

C. Selection of Detailed Color Feature

Bilinear interpolation of sparse color samples along patch
boundaries can result in serious loss of image detail, as shown
in Fig. 3(d) [4]. TPS interpolation can improve the results [26];
however, sparse features still have serious issues in pre-serving
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Fig. 5. Feature extraction process of proposed adaptive super pixel operator: (left to right) input, initialization, result after one adaption, and final result; (top and
bottom) super pixel results and their corresponding rasterization in different stages.

Fig. 6. Rasterization results using various types of feature but with the same
number of features. The first column shows a parrot under 4-time magnification,
as follows: TPS rasterization results with curvilinear features, gradation features,
and both curvilinear and gradation features (from top to bottom, respectively).
The second to the fourth columns show the selected features, TPS rasterization
results, and error analysis with curvilinear features, gradation features, and both
curvilinear and gradation features (from top to bottom, respectively).

details, as shown in Fig. 3(e). In this work, we encode fine detail
as color features, F , to overcome the problem of information
sparsity. Along with scattering data interpolation of color sam-
ples, our approach to representation can preserve the compress-
ibility of diffusion curves without the need to solve global PDEs
nor the additional memory overhead imposed by intermediate
structures. For the sake of clarity, we define our features based on
the concept of gradient and value constraints proposed by Boyé
et al. [7]. First, contours (gradient constraints) are features in
detailed regions presenting a gradient discontinuity, i.e., the two
sides present two distinct colors. In this work, contours are de-
noted as curvilinear features, FC . Second, gradations (value
constraints) are features in homogeneous regions presenting a
smooth color gradient, i.e., the two sides have the same color. In
this work, gradations are denoted as gradation features, FT . In
the following, we detail the processes of feature extraction and
embedment.

1) Curvilinear Feature Detection: Elder et al. [12] reported
that edges, (i.e., curvilinear features) delineate silhouettes and
occlude contours, making them important cues in the capture
and interpretation of scenes. Thus, these features are captured
by identifying potential locations that present obvious differ-
ences in color between the two sides of a pixel. This is achieved
using a Canny edge detector with threshold, TCanny . To de-
scribe this distinction, we place a pair of features that present
two distinct colors, FC

i = {pi, Ci}, across edge points (ei) lo-
cated at ei ± 0.5�vi where �vi is the direction perpendicular to
the pixel gradient �gi, and colors are the colors of the two clos-
est pixels. We record our features FC

i = {pi, Ci} in the patch
parametric coordinate using a 2D binary search process and Lab
space, respectively. The first column in Fig. 6 shows an example
using these curvilinear features. There are obvious artifacts in
the smooth gradient regions due to the sparse curvilinear fea-
tures. We can overcome the sparsity issue by setting a very low
TCanny value, which increases the number of features as well
as the computation and memory costs. Our scheme adds grada-
tion features, rather than setting a small TCanny to overcome
the issue of sparsity, as described in the following section. In
Section IV-C3, we also present a scheme by which to select
an optimal set of curvilinear and gradation features based on a
proposed heuristic metric.

2) Gradation Feature Identification: We overcome the issue
of curvilinear sparsity associated with a large T canny by adding
low-frequency gradation features based on adaptive super-pixel
extraction. Achanta et al. [1] clustered a cell of Ncell pixels
that present a similar color distribution in a local area where
N cell = �NPixel/4000� in all our examples and Npixel is the
number of pixels. Although each cell is similar in size, color vari-
ation may be too great to break the smooth maintenance ability
of TPS interpolation for artifact-free results. Subsequent super-
pixel decomposition is enforced until the variance in cell color
is below a selected threshold, TSuper as follows. The proposed
system first estimates the color covariance of all pixels, σS,C , in
a super-pixel (S,C), in the Lab color space where S is the iter-
ation index, and C is the cell index. When σS,C is larger than
TSuper, we set the target number of super-pixels, as follows:
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Fig. 7. Selection process of optimal features involving computation of pixel intensity gradients and their corresponding gradient histograms, selecting an initial
set of parameters, (TCanny

0 , TSuper
0 ), and determining the final values of (TCanny , TSuper) with Monte Carlo searching [30].

NS+1,C , as �W p σS,C∑
c∈S σS,C

�+ �W i 1
σ0.5
S,C

� where S is the cell

set at this level, W p refers to the weight for variance in the par-
ent cell, and W i is the weight for cell variance in subsequent
super-pixel decomposition inside the (S,C)-th cell.

This process repeats until convergence or until the desired
level is reached. Generally, NS,C ,C affects only the conver-
gence speed; i.e., more gradation features leads to more iter-
ations. Based on experiment results, we set W p at 4, and W i

at NS,C

40 to achieve the optimal balance. After constructing 40
super-pixel cells of different levels, we added all cell bound-
ary pixels as gradation features FT

i using their corresponding
patch-based locations and pixel colors. Fig. 5 presents an exam-
ple of iteratively selecting gradation details of different levels
and their corresponding rasterization results. Our adaptive su-
per pixel algorithm iteratively adjusts the block size to encode
appropriate coloring details as constraints for the TPS operation.
In other words, this process retains more of the detail as the size
of the blocks becomes increasingly fine. Similarly, the second
column of Fig. 6 shows that the gradation features encode low-
frequency details of similar color. However, using them only
blurs the high-frequency details in regions with sharp transitions.
We compensate for this using curvilinear features to maintain
scalability during magnification, as shown in the third column
of Fig. 6.

3) Optimal Feature Selection: Generally, a larger number of
features results in lower reconstruction error, and vice versa.
Therefore, we designed a criterion to determine the quality of
the parameter selection in order to balance reconstruction error
E versus the coverage ratio C (i.e., the compress rate). The
criterion is referred to as efficiency (ω = 1/EC). We can also
express the selection as follows: whereΩ() represents the feature
selection and reconstruction process based on two parameters,
TCanny and TSuper. Finally, parameter selection is formulated

as an optimization problem.

arg max
TCanny,TSuper

Ω(TCanny, TSuper) (1)

We do not employ a simple brute force search process for
an optimal (TCanny, TSuper) set, due to the time-consuming
nature of global TPS process, as shown in Table II. Rather,
we solved the optimization process of parameter selection with
Monte Carlo searching [30] by selecting an initial value of
TCanny
0 and TSuper

0 using ω to evaluate its performance, keep-
ing the best till now, and mutating both TCanny

i+1 = TCanny
i +

ΔTCanny and TSuper
i+1 = TSuper

i +ΔTSuper for the next iter-
ation where ΔTCanny and ΔTSuper are randomly selected in
the range of±|TCanny| and±|TSuper|. The process stops when
optimal solution has been found or the number of iterations ex-
ceedsNtotal. In this study, we used the following settings:Ntotal

= 20. Later, in Section VI-A, we have conducted an experiment
to determine these parameters for our study.

D. Image Reconstruction With a Composite Structure

In order to unify parametric patches, M , and detailed features,
F , for easy and consistent TPS operations, our system normal-
izes the sub-patch parametric coordinate (s, t) to uniform as
(S, T ). TPS interpolation creates three as-harmonic-as-possible
functions, r(S, T ), g(S, T ), b(S, T ), for three color channels
based on the given set of N features, {. . . , (Si, Ti, Ci), . . .}.
Since our system applies the same operation to three channels
independently, the following uses f to denote r, g, and b. The
solution must minimize the bending energy described as

I(f) =

∫ ∫
Ω

f2
SS + 2f2

ST + f2
TT dSdT (2)
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Fig. 8. Our TPS matrix construction consists of transforming the feature loca-
tions from pixel coordinate to parametric coordinate and filling K, P, and W
with features’ inter-relationship. After inversion, our system rasterizesthe i-th
pixel by transforming to parametric coordinate and estimating its color using
f(Si, Ti) listed in Eq. (3).

and f must fulfill

f(S, T ) = b0 + b1S + b2T +

N∑
i=1

wiφ(‖ (Si, Ti)− (S, T ) ‖)
(3)

where
∑N

i=1 wi = 0,
∑N

i=1 wiSi = 0 and
∑N

i=1 wiTi = 0. This
enables the formation of a linear system comprising all of the
features F , to determine the TPS coefficients, wi, as[

K P

PT O

] [
W b0 b1 b2

]T
=

[
H 0 0 0

]T
(4)

where Kij = φ(‖(ui, vi)− (uj , vj)‖), the i-th row of P is
{1, Si, Ti}, O is a 3× 3 zero matrix, W = {w1, . . . , wN}, and
H = {C1j , . . . , CNj}. After solving Eq. (4), the proposed sys-
tem respectively utilizes W , b0, b1, and b2 for three color chan-
nels in estimating the color of all pixels within the patch using
r(S, T ), g(S, T ), and b(S, T ). Fig. 8 summarizes the construc-
tion, inversion and interpolation process of the TPS kernel, and
Fig. 20 illustrates the ability of the algorithm to recover the finest
detail.

V. GPU-BASED TPS INTERPOLATION

Our system uses all features to faithfully rasterize a photoreal-
istic patch using TPS interpolation. This results in an enormous,
dense feature matrix with an inversion cost of O(N3), where N
refers to the total number of features. As shown in Table I, in-
version generally takes between minutes and hours to complete;
i.e., real-time global TPS interpolation is impossible. Many-core
GPUs are able to accelerate the process of global matrix inver-
sion; however, this reduces the process to the level of several
seconds, which is insufficient for real-time operations. In this
section, we propose a GPU-based TPS interpolation scheme us-
ing seamless localized patches to resolve this problem.

A. Patch-Based Parallel Structure

Local divide-and-conquer curve-fitting provides better ed-
itability and lower computational costs, when features are
densely packed or when a feature has only localized affection;
i.e., when the distance between a feature and the estimated pixel

TABLE I
TIMING STATISTICS OF ENTIRE MATRIX CONSTRUCTION, INVERSION, AND

RASTERIZATION PROCESS (MEASURED AS SECONDS PER PATCH). CPU REFERS

TO GLOBAL CPU SCHEME, GPU DENOTES THE GLOBAL GPU SCHEME, NONE

REFERS TO THE LOCALIZED GPU SCHEME WITHOUT PACKING, AND PACKING

DENOTES THE LOCALIZED GPU SCHEME WITH PACKING. ALL

MEASUREMENTS WERE OBTAINED USING A INTEL I7-4930K 3.40 GHZ

COMPUTER WITH 64 GB OF RAM, AND AN NVIDIA GEFORCE GTX 1080
WITH 16 GB OF VIDEO RAM

Fig. 9. Seams formed along boundaries after clustering features based on sub-
patch topology. Our system overcomes this issue through formation of a set of
overlapping sub-patches while blending rasterization results.

is large, its affection is negligible. Based on the result of a simple
experiment described in Section VI-A, our localized patch-wise
TPS interpolation scheme directly uses the sub-patches created
during the structure construction process for the clustering of all
extracted features in order to decompose the inversion of a com-
plete characteristic matrix into a set of localized characteristic
matrices for interpolation in a patch-wise manner. This increases
the number of inversions; however, the size of the matrices as-
sociated with each inversion actually shrinks. This means that
computational costs are reduced, due to the fact that the cost
grows exponentially with the size of the matrix but only linearly
with the number of inversions. Nonetheless, two issues remain.
First, non-overlapping sub-patches produce seams along their
boundaries, due to differences in feature affections across sub-
patches, as shown in Fig. 9. As shown in Section VI-C, we
employ weighted averaging to remove the seams from overlap-
ping sub-patches. Second, sub-patches vary in the number of
features to have unequal-size GPU kernels for extra kernel syn-
chronization time. We used the local distribution of features to
take full advantage of the parallel computing power of the GPU
for computation, as detailed in the next section.

B. Maximize GPU Parallelization

We developed two schemes to enable the full utilization of
all GPU cores in parallel. Our first objective was to reduce the
amount of data transferred between the CPU and the GPU (a typ-
ical computational bottleneck). During manipulation, our uni-
fied parametric space allows the direct transfer of manipulated
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Fig. 10. Our localized patch TPS scheme consists of patch decomposition,
equal-number feature patch extension, TPS kernel formation, TPS kernel inver-
sion, rasterization, and overlapping interpolation.

control points to the GPU, whereupon the parametric informa-
tion of the features is updated for TPS kernel construction in
the GPU, instead of updating and constructing kernels in the
CPU. This effectively reduces the amount of data that must be
transmitted. Second, the cost of a TPS kernel can be expressed
in terms of the number of rasterized pixels and features, which
means that it should be possible to minimize GPU synchro-
nization time by keeping both terms as similar as possible. As
outlined in the previous section, M and N were assigned uni-
form parametric spacing, thereby ensuring that the size of the
respective sub-patches is similar. It is also important to ensure
that the matrices have the same size. In other words, we can
ensure that each sub-patch has the same number of features by
finding the sub-patch with the most features and extending fea-
ture selection outward to include all neighboring features until
the largest number is reached. In other words, our system adds
extra features from neighboring sub-patches according to the
parametric distance to the center of the patch. In most cases,
the added features have only a negligible effect on rasterization,
and subsequent packing can mediate the computation costs, as
shown in Table I. However, in extreme cases, when the number of
features varies greatly among the patches, packing requires that
an enormous number of features be located in sparse patches,
for which the computation cost is not negligible.

Fig. 10 summarizes our localized patch-based TPS rasteriza-
tion procedure. The localized TPS framework first decomposes
patches into sub-patches according to their feature densities and
physical size. The feature selection region of each sub-patch is
extended so that each sub-patch has the same number of fea-
tures for each TPS inversion kernel, thereby ensuring the same
computation cost and maximizing the benefits of parallel com-
putation by the GPU. All sub-patch features are used to construct
the TPS matrix and compute its inversion for sub-patch raster-
ization. Finally, the final result is stitched together using our
inter-patch interpolation scheme.

VI. PARAMETRIC ABLATION STUDY

In order to cover the entire possible feature selection range
and reduce the number of feature selection iterations, we have
conducted a simple experiment to choose a proper initial set of

parameters and determine the perturbation range. Additionally,
we conduct experiments to justify adaptation of the global kernel
as a local one and the overlapping ratio to remove the seam.

A. Optimal Feature Selection

The optimization process presented in Section V-A may re-
quire a large number of trials along with the possibility of finding
a local maxima if the initial start-up parameters are not close to
the global maximum. By observing the brute-force solutions, we
were able to empirically determine the parameters for regions
of high and low variance, based on the density of curvilinear
features. On the histogram for a region of high variance, the op-
timal brute-forceTCanny value falls at approximatelyμ− 0.5σ.
Similarly, a threshold for regions of low variance generally falls
at μ+ σ. When analyzing cases that fall between these two
extremes, the optimal threshold moves toward μ− 0.5σ when
the patch contains greater variation; otherwise, it moves toward
μ+ σ. We applied the same procedure to determine the super-
pixel threshold, TSuper. The thresholds for regions of high and
low variance are 0.8σ and μ+ 0.25σ, respectively. The opti-
mal threshold of a patch with greater variance is close to 0.8σ;
otherwise, it is close to μ+ 0.25σ. The two thresholds are lin-
ear with the curvilinear selection ratio, t = μ−CSupper

CCanny−CSuper ∈
[0, 1], where CCanny and CSuper are two user-selected con-
stants with values of 30 and 60, respectively. We use this ra-
tio in the linear interpolation of two extreme thresholds for
two thresholds asTCanny

0 = t(μ− 0.5σ) + (1− t)(μ+ σ) and
TSuper
0 = t(0.8σ) + (1− t)0.25σ, respectively.
Table II shows that our empirical approach and optimiza-

tion scheme both provide results close to the brute-force so-
lution. This table also shows that the compression efficiency of
our methods is comparable to the state-of-the-art image format,
JPEG, the optimal efficiency of which is determined by brute-
force searching through various loss rates.

B. Localized Reconstruction

In order to determine the possible range of localized recon-
struction while still introducing negligible errors, we have con-
ducted an experiment as follows. We first computed the TPS
ground truth of a patch using all of the patch features described
in Section IV-D. Inside the patch, we selected a sub-patch by
randomly assigning a center within the patch with a designed
width of W sub, creating a selection square (the generally pre-
ferred shape for manipulation and computation), and using all
of the features that fall within the square for TPS rasterization.
We then compared the error obtained in this exercise against the
ground truth using various values for W sub. We also analyzed
the effective region by extending the sub-patch outward until the
central PSNR exceeded a user-specified threshold (T effective),
set at 50. At the desired T effective level, our experiment re-
sults revealed that the Rsub = Nsub/Npatch patch that the ef-
fective sub-patch ratio, Rsub = Nsub/Npatch , and collection
ratio, Rcollect = N collect/Npatch, are relative to the Rsub fea-
ture density,D = Nfeatures/Npatch asRsub = 5D/(2.0−D)
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TABLE II
STATISTICAL COMPARISON OF PROPOSED PARAMETER SELECTION SCHEME AND JPEG. INITIAL DENOTES THE RESULTS OF OUR INITIAL PARAMETER SELECTION;
OPTIMAL DENOTES THE RESULTS OF OUR OPTIMAL PARAMETER ESTIMATION; BRUTE-FORCE DENOTES THE RESULTS OF THE BRUTE-FORCE PARAMETER SEARCH

FOR OUR ALGORITHM, JPEG DENOTES THE RESULTS OF THE BRUTE-FORCE SEARCH FOR JPEG AT VARIOUS LOSS RATES FOR OPTIMAL COMPRESSION

EFFICIENCY, PSNR DENOTES THE PEAK SIGNAL-TO-NOISE RATIO, ω DENOTES OUR DEFINED EFFICIENCY VALUE AND BPP DENOTES THE BIT-PER-PIXEL RATIO

Fig. 11. We simplify TPS interpolation with simplified 2D spline fitting and
interpolation using independent fitting and manipulation (a), correlation fitting
and independent manipulation (b), and correlation fitting and manipulation (c)
where the dots with solid red color are features for the left segment and the dots
with green ring are for the right.

and Rcollect = 5D, where Nsub is the desired number of pix-
els in a sub-patch, Npatch is the number of pixel in the patch,
N collect is the number of pixels in the extended collection re-
gion, and N features is the number of pixels in the pixel. We can
estimate M and N for the patch as M = (R

subWpatch

Hpatch )0.5 and

N = (R
patchHsub

Wpatch )0.5 where W patch and Hpatch are the lengths
of the corresponding patch boundaries. Accordingly, our local-
ized patch-wise TPS interpolation scheme directly uses the sub-
patches created during the structure construction process for the
clustering of all extracted features in order to decompose the in-
version of a complete characteristic matrix into a set of localized
characteristic matrices for interpolation in a patch-wise manner.

C. Patch-Based Boundary Overlapping Seam Removal

We extend the TPS kernel extension outward to include fea-
tures from neighboring sub-patches and thereby minimize re-
construction error. This would cause some of the sub-patches
to overlap; however, it should be possible to remove seams by
weighting the sub-patches to color a pixel as follows: Ci =∑

o∈O wblend
o Co(pi) where O is the set of sub-patches cover-

ing the i-th pixel, Co denotes the TPS rasterization of the o-
th sub-patches, and wblend is the blending weight proportional
to the distance to the sub-patch center, pcentero . We define the

blending weight as wblend
m = |pi−pcenter

m |
∑

o∈O |pi−pcenter
o | . Fig. 9 presents

an example of the proposed overlapping scheme. Our algorithm
repeatedly uses features from neighboring units to achieve high-
order continuity and avoid the formation of seams, blurring, and
ghost artifacts, as shown in Fig. 11. When we separated the fea-
tures into two groups and fit them independently using only one

Fig. 12. The top is a butterfly of monotonic regions and complex patterns and
the bottom is fish of complex fish scales. From left to right are raster images,
TPS rasterization results, and 4-time magnification results.

link point (similar to having two independent textured meshes),
any subsequent manipulation could result in the formation of
a seam along the boundary as shown in Fig. 11(a). When we
repeatedly used features from neighboring units to obtain two
segments (similar to two overlapping textured meshes), inde-
pendent manipulation could cause the results to deviate, result-
ing in ghosting and/or blurring, as shown in Fig. 11(b). When
manipulating the features and then refitting them to obtain two
segments, continuity remains (i.e., no ghosting or blurring), as
shown in Fig. 11(c). This is a demonstration that the repetition of
these features prevents ghosting and blurring artifacts in over-
lapping regions. Furthermore, seam removal averages the dif-
ference across sub-patch boundaries to provide inter-sub-patch
anti-aliasing, whereas TPS interpolation provides antialiasing as
an inherent feature inside a sub-patch.

VII. VECTOR GRAPHICS MANIPULATION

Image editing is important in a wide range of multimedia and
graphics applications, such as movie post-production. It is possi-
ble to perform color editing and cross mapping in a raster space
and then vectorize the results; however, it requires additional
time and manual parameter adjustment for vectorization. It also
tends to induce inconsistencies between the raster and vector re-
sults, due to vector information estimation. The proposed hybrid
vector representation uses efficient patch-wise TPS-based inver-
sion and interpolation, which is ideally suited to editing in real
time. It provides the flexibility required for image magnification,
color editing, and cross mapping with low reconstruction error
in an intuitive manner. The ability to edit images directly in the
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Fig. 13. Our color editing consists of the desired color selection, target color selection, and harmonization.

vector space without the need for intermediate raster represen-
tation and vectorization would be a boon to artists. Furthermore,
raster-space operations generally require additional mechanisms
to enforce spatial and temporal coherence among object patches
and across different frames; however, the proposed representa-
tion achieves coherence directly, as shown in our supplementary
videos. These applications are detailed in the following sections.

A. Image Magnification

Image magnification becomes increasingly important with the
resolution of screens. Our representation enables natural magni-
fication by directly scaling the parametric coordinate of all pix-
els, based on a given magnification ratio and rasterizing them
based on these coordinates using the original TPS kernels. As
shown in Fig. 12, the proposed system enables faithful preser-
vation of structural and textural details, such as butterfly wing
patterns and fish scales during magnification.

B. Color Editing

Color editing is generally used to manipulate the color of
particular object regions while maintaining important border
characteristics. Our parametric patches make it possible to limit
color operations to desired object regions. It also enables the
direct application of coloring operations to gradation and curvi-
linear features inside the desired region for the modification of
appearance without altering the curvilinear features across the
boundary, thereby maintaining important border characteristics,
as shown in Fig. 13. This is due to the fact that two curvilinear
features are used for representing both sides across the boundary.
Users can select specific colors by pointing out desired features,
our system propagates the selection to other features including
both the curvilinear and gradation features of a similar color pro-
file within a user-specified propagation radius. Users can then
adjust the color by manipulating the ab-channel ring in the Lab
space, and our system would propagate the manipulation to ad-
just all selected features accordingly while these color features
would be used as new constraints for TPS interpolation. How-
ever, this generally requires the application of a harmonization
operator [9] to obtain harmonic results. Users may also provide
a 3× 3 color transform matrix to transform the color of all gra-
dation features in order to achieve interesting shading effects,
such as cartoon shading.

C. Structural Color and Texture Transfer

Cross mapping is important in scenic transitions and special
effects; however, it generally requires the manual construction

Fig. 14. Given the source and target patches, the proposed cross-mapping op-
erator computes the source-target transformation using the source-target match-
ing corners. Source features can be transformed onto the target patch to perform
composition operations for final TPS rasterization.

of a correspondance map. As shown in Fig. 14, our parametric
patches enable the direct creation of source-to-target inter-patch
mapping by linking the source and target patches with the same
normalized parameter space created by the four corners of the
source and target patches. It is possible to forward-map a dense
grid of samples to form the final result; however, this requires
high resolution to avoid holes and a weighting scheme to deal
with multiple samples mapped to the same destination pixel.
Our GPU-based method makes it possible to rasterize the map-
ping results in real time without over-rendering. Our algorithm
enables the seamless replacement of texture, as shown in Fig. 15.

Our editing tool also allows users to edit the colors of selected
features based on their locality and color distribution. Our local-
ized TPS interpolation scheme provides sub-patch overlapping
to facilitate seamless blending; it does not provide a blending
function across object patches. We therefore apply 3D remesh-
ing operators [20], [28] to construct source-to-target correspon-
dence and compute an alpha map across characteristic patches
of the face. Users can take this one step further by adjusting the
alpha map according to the effect they wish to achieve. Finally,
our system applies color editing instructions to these composite
features and then reconstructs the TPS kernels for rasterization.

D. Shape Manipulation

Our parametric patches align directly with object segments;
therefore, we can provide intuitive high-level object-based
shape manipulation rather than low-level feature-based manip-
ulation, as shown in Fig. 16. Although raster- and object-space
image-based methods can deform a butterfly as shown in Fig. 17,
they might possibly deform the image structures and induce
unwanted artifacts. Although a high-density mesh can relieve
the deformation artifacts, the manipulation efficiency becomes
an issue. However, our system provides another possibility of



CHEN et al.: IMAGE VECTORIZATION WITH REAL-TIME THIN-PLATE SPLINE 25

Fig. 15. This shows the results of our cross-mapping operator. From left to right and top to bottom are the Banana, Kiwi, Butterfly1, and Butterfly2 scenes. The
first column is the target patches, the second column is the source patches, and the third column is the cross-mapping results.

Fig. 16. The top is a duck and the bottom is a mark cup. From left to right are
TPS results with parametric structures, 4-time magnifications, detailed features,
TPS results with deformed parametric structures, 4-time magnifications, and
relocated detailed features.

Fig. 17. This illustrates the benefit of shape manipulation in vector space
to preserve the structural and textural information while comparing to other
raster- and object-space editing algorithms. The input is a butterfly with beautiful
and structural patterns (a). Users generally wants to have the interior patterns
deformed with the exterior boundary (b) (our vector-space manipulation), but
raster-space “arch warping” of Adobe Photoshop [36] crookedly bends those
top boundary-perpendicular patterns due to uneven stretching of the top corner
(c), object-space “as rigid as possible” of Adobe Photoshop [14] structurally
distorts those top patterns because the mesh formation do not collide with the
interior structure and the deformation distribution is not efficiently aligned with
the structure, either (d), and object-space “Bounded Bihoarmonics Weighting”
(BBW) [16] affine deform the bottom circular dot patterns (e).

real-time high-level shape editing while the results can faithfully
preserve the structural and textural contents of a photorealistic
image. As a result, the user can move the control points to alter
the shape of the image. The system reconstructs the parametric
space to relocate detailed features in order to retain consistency
in the alignment of structural and textural elements, before
rasterizing the final results. Furthermore, the parametric patches

Fig. 18. From left to right are the inputs, and the vectorized results and cor-
responding zoom-ins of Xie’s [39] algorithm and ours in a lotus, butterfly, and
fish.

are easily incorporated with other patch-based manipulation
methods, such as [14], [16].

E. Abstraction and Stylization

Abstraction refers to image representation at various levels
of detail, i.e., in different frequency bands. The proposed curvi-
linear features record cross-level visually important boundaries
and borders with the amount of allowable variation determined
by TSuper that mentioned in the Section IV-C. This means that
the proposed system is able to select a TSuper value to detect
fine-to-coarse color details among the curvilinear features. In
other words, finer details are more faithfully represented using a
smaller TSuper, whereas coarser details enable a higher degree
of abstraction using a larger TSuper. Stylization refers to ren-
dering an abstraction in a style reminiscent of painting, such as
water color or oil painting. At all levels of abstraction, we are
able efficiently transform and quantize gradation features to fill
some areas with continuous color, while preserving more sub-
dued variations in local regions. We can then layer and composite
these stylized levels using brush strokes drawn along connected
curvilinear features that are aligned with important borders in
order to emphasize important elements via sharpness. As shown
in Fig. 19, our vector-based approach to abstraction and styliza-
tion is better able to preserve edges, align features, and remove
unwanted high-frequency detail. Furthermore, all of our manip-
ulators work in the same global parametric space, which means
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Fig. 19. From top to bottom show our abstraction and stylization results of a tropical fish and bobcat. From left to right are the input, three detail levels from fine
to coarse, and three stylization results.

Fig. 20. The top shows the result of a parrot using optimized gradient meshes [31] and a durian using topology-preserving gradient mesh [21] along with 4-time
magnification on their left top. The bottom shows our rasterized results, constructed parametric patches, and extracted details features of the parrot and durian. The
left bottom in the top also shows the 4-time magnification of our rasterized results. Our algorithm can retain the regular mesh structure and fine details under the
criterion of the same file size.

that our system can easily place the stylized strokes in a con-
sistent manner across all frames to ensure temporal consistency
and without flickering, as shown in our supplemental video. Our
supplemental video also demonstrates the use of our abstraction,
stylization operator and facial painter in producing temporally-
coherent non-photorealistic effects.

VIII. COMPARISONS AND DISCUSSION

After inputting raster images and labeling maps, the proposed
vectorization algorithm automatically creates a hybrid structure
to ensure that the image remains editable and scalable. Due to
length limitations, the complete results are held on supplemen-
tal website.1 Parametric patch-based methods [21], [31], [37]
provide low-level editing tools to manipulate basic patches and
their color details. Ensuring that an image can be edited requires
that the parametric meshes be simple; however, this can lead to
the loss of fine detail, as shown in Fig. 20. In this image, only
a few curvilinear features are extracted from the yellow petals
and parrot, thereby hindering faithful reconstruction of the as-
sociated details. This is a clear demonstration of the trade-off
between reconstruction quality, compressibility, expressibility,
and editing complexity.

1web site address: http://graphics.csie.ntust.edu.tw/pub/RealTimeTPS/

Additionally, we also compare our reconstruction results
with the curve-based vectorization algorithm proposed by Xie
et al. [39] in Fig. 18. While visually examining the zoom-
ins, our system generally can preserve more details. When
matching the same file size of these methods, the proposed
system makes it possible to avoid these problems by us-
ing simple parametric patches for editing and using fea-
tures for detail restoration. Our representation records a fea-
ture using (x, y,R,G,B):2× 2 + 3 = 7bytes. A parametric
patch requires four corner points and the s, t, and st deriva-
tives for 4× (2 + 2 + 2 + 2) = 32bytes. This means that we
need a total of (#features× 7bytes+#patches× 8bytes+
#LabelingMap) bytes, which are recorded as a sequence of
numbers. A general compression algorithm, such as Zip, can
be used to achieve compression of approximately 75%. Reports
on other state-of-art algorithms provided results in raw format;
therefore, we adopted the same standard. Table III shows that
our representation outperformed the other vector representations
[23], [37], [40] in terms of mean construction error, compression
ratio, and compression efficiency. JPEG is a popular raster image
format due to its efficiency and compressibility; therefore, we
compared the performance of our algorithm with that of JPEG in
terms of magnification. We homogenously scaled down two full
HD images (beef and parrot) to one-fourth of the original size.
We then vectorized the scaled results using our representation
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TABLE III
THIS ILLUSTRATES THE COMPARISON OF OUR THE PROPOSED REPRESENTATION AGAINST AND OTHER STATE-OF-THE-ART METHODS. - MARKS THAT THE

RELEVANT STUDY DOES NOT PROVIDE THISWE CANNOT FIND THE DATA IN THE WORK, AND. OURS, PATCH, AND SUB. RESPECTIVELY DENOTE OUR METHOD,
THE PATCH-BASED METHOD [37], THE SUBDIVISION METHOD [23], AND THE CURVILINEAR METHOD [40] RESPECTIVELY

Fig. 21. This illustrates the magnification comparison between our algorithm and JPEG on a beef (top) and parrot (bottom). From left to right are the original
image and the 4X magnification of the original, our reconstruction result, JPEG result with bilinear interpolation, and JPEG result with a commercial super resolution
software [3].

and magnified them back to the original size. We also applied
similar effects using raster-based magnification with bilinear in-
terpolation or super resolution [3]. As shown in Fig. 21, our
algorithm preserved the detail, whereas raster-based magnifica-
tion tended to blur the detail and induce aliasing. Furthermore,
the proposed algorithm achieved compression efficiency of 85.3
and 165.5, whereas JPEG achieved compression efficiency of
65.9 and 149.7 (bilinear interpolation) and 76.7 and 154.8 (su-
per resolution).

IX. CONCLUSION AND FUTURE WORK

In this work, we developed a hybrid vector representation
using parametric patches to enable editing and detailed color
features to enable scaling and ensure compactness. Our sys-
tem selects optimal thresholds for feature extraction using a ge-
netic algorithm with a novel metric of compression efficiency
while having a good start-up set estimated using a gradient his-
togram. Then, we register the extracted features within paramet-
ric patches for GPU-based parallel TPS rasterization in real time.
Our real-time TPS kernel construction, inversion, and rasteriza-
tion scheme makes it possible to perform vector-based image
magnification, color editing, and cross mapping. The proposed
algorithm provides compressibility, scalability, and editability

superior to those of state-of-the-art algorithms. It also achieved
compressibility on par with JPEG with superior scalability.

The proposed system is not without limitations. Although
scattering data interpolation permits localized acceleration and
manipulation, while rasterizing with a very large magnitude of
magnification, these point constraints become sparse to induce
aliasing and blurring artifacts. Furthermore, point-based features
are not effective and efficient for encoding line and curve fea-
tures, and curvilinear features represented as a feature pair re-
quires extra memory. Therefore, we would like to encode line
and curve features as curve-based features along with a dis-
continuity embedment scheme for TPS interpolation in order
to have better compression rate and rasterization speed. While
rasterizing our patches, we transform the pixel coordinate to
the parametric coordinate with a 2D binary searching process.
This operation may induce numerical errors and require extra
computation time. We would like to use newly available tes-
sellation shaders to accelerate the process. Our framework cur-
rently only subdivides an object segment based on its feature
density, but this may induce varied rasterization areas and fea-
ture densities among patches from different segments, i.e., to
have different payloads for GPU threads. In the future, we will
take segmented areas into consideration in the subdivision of
patches. Packing features can be used to balance kernel payloads
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to improve performance; however, when the feature density of
patches varies too widely, packing becomes less than optimal.
It would be preferable to sort patches based on feature density
and arrange inversion kernels with a similar number of features
in the same computation group. This could greatly improve the
efficiency of packing and TPS interpolation. Our framework cur-
rently uses the CPU to build TPS kernels for each sub-patch and
send them to the GPU for inversion; however, packing the same
number of features requires the storage of multiple copies of
the same feature, thereby imposing undue burden on memory
usage and curtailing CPU-GPU data transmission bandwidth.
We would therefore also like to deploy memory indexing that
includes the usage of shared memory among threads in order to
resolve this issue. While applying our algorithm to a sequence of
frames, independently feature extraction may induce temporal
inconsistency and flickering artifacts. Therefore, we would like
to develop a temporal feature extraction and TPS interpolation
scheme for video vectorization in future. Finally, our algorithm
currently depends on the input labelling map to create opera-
tional patches for various topologies. We would like to develop
an automatic labelling mechanism based on object recognition
and segmentation.
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